In the present work, we describe the synthesis of new 1,3,4-thiadiazole derivatives from natural (R)-carvone in three steps including, dichloro-cyclopropanation, a condensation with thiosemicarbazide and then a 1,3-dipolar cycloaddition reaction with various nitrilimines. the targeted compounds were structurally identified by H & C NMR and HRMS analyses. The cytotoxic assay demonstrated that some synthesized novel compounds were potent on certain cancer cell lines. Molecular modeling studies were undertaken to rationalize the wet lab study results. Furthermore, molecular docking was performed to unveil the binding potential of the most active derivatives, 3a and 6c, to caspase-3 and COX-2. The stabilities of the protein-compound complexes obtained from the docking were evaluated using MD simulation. Furthermore, FMO and related parameters of the active compounds and their stereoisomers were examined through DFT studies. The docking study showed compound 6c had a higher binding potential than caspase-3. However, the binding strength of 6c was found to be less than that of the standard drug, doxorubicin, as it formed lower conventional hydrogen bonds. On the other hand, compound 3a had a higher binding potential to COX-2. However, the binding potential 3a was much lower than that of the standard COX-2 inhibitor, celecoxib. The MD simulation demonstrated that the caspase-3-6c complex was less stable than the caspase-3-doxorubicin complex. In contrast, the COX-2-3a complex was stable, and 3a was anticipated to remain inside the protein's binding pocket. The DFT study showed that 3a had higher chemical stability than 6c. The electron exchange capacity, chemical stability, and molecular orbital distributions of the stereoisomers of the active compounds were also found to be alike.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2024.108159DOI Listing

Publication Analysis

Top Keywords

binding potential
16
molecular docking
8
active compounds
8
compound higher
8
higher binding
8
complex stable
8
chemical stability
8
binding
6
multitargeted molecular
4
docking
4

Similar Publications

Identification and Characterisation of Potential Targets for N6-methyladenosine (m6A) Modification during Intervertebral Disc Degeneration.

Front Biosci (Landmark Ed)

November 2024

Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China.

Background: The mechanism for RNA methylation during disc degeneration is unclear. The aim of this study was to identify N6-methyladenosine (m6A) markers and therapeutic targets for the prevention and treatment of intervertebral disc degeneration (IDD).

Methods: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and quantitative reverse transcription PCR (RT-qPCR) were employed to analyze m6A modifications of IDD-related gene expression.

View Article and Find Full Text PDF

Chemically Induced Dimerization via Nanobody Binding Facilitates in Situ Ligand Assembly and On-Demand GPCR Activation.

JACS Au

December 2024

Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.

Methods that enable the on-demand synthesis of biologically active molecules offer the potential for a high degree of control over the timing and context of target activation; however, such approaches often require extensive engineering to implement. Tools to restrict the localization of assembly also remain limited. Here we present a new approach for stimulus-induced ligand assembly that helps to address these challenges.

View Article and Find Full Text PDF

Targeting iron metabolism has emerged as a novel therapeutic strategy for the treatment of cancer. As such, iron chelator drugs are repurposed or specifically designed as anticancer agents. Two important chelators, deferasirox (Def) and triapine (Trp), attack the intracellular supply of iron (Fe) and inhibit Fe-dependent pathways responsible for cellular proliferation and metastasis.

View Article and Find Full Text PDF

Unveiling Key Biomarkers and Mechanisms in Septic Cardiomyopathy: A Comprehensive Transcriptome Analysis.

J Inflamm Res

December 2024

Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Purpose: Septic cardiomyopathy (SCM) is a significant global public health concern characterized by substantial morbidity and mortality, which has not been improved for decades due to lack of early diagnosis and effective therapies. This study aimed to identify hub biomarkers in SCM and explore their potential mechanisms.

Methods: We utilized the GSE53007 and GSE207363 datasets for transcriptome analysis of normal and SCM mice.

View Article and Find Full Text PDF

Single-Cell Sequencing and Machine Learning Integration to Identify Candidate Biomarkers in Psoriasis: .

J Inflamm Res

December 2024

Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People's Republic of China.

Background: Psoriasis represents a persistent, immune-driven inflammatory condition affecting the skin, characterized by a lack of well-established biologic treatments without adverse events. Consequently, the identification of novel targets and therapeutic agents remains a pressing priority in the field of psoriasis research.

Methods: We collected single-cell RNA sequencing (scRNA-seq) datasets and inferred T cell differentiation trajectories through pseudotime analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!