Global warming and eutrophication contribute to frequent occurrences of toxic algal blooms in freshwater systems globally, while there is a limited understanding of their combined impacts on toxin-producing algal species under interspecific competitions. This study investigated the influences of elevated temperatures, lights, nutrient enrichments and interspecific interactions on growth and microcystin (MC) productions of Microcystis aeruginosa in laboratory condition. Our results indicated that elevated temperatures and higher nutrient levels significantly boosted biomass and specific growth rates of Microcystis aeruginosa, which maintained a competitive edge over Chlorella sp. Specifically, with phosphorus levels between 0.10 and 0.70 mg P L, the growth rate of Microcystis aeruginosa in mixed cultures increased by 23 %-52 % compared to mono-cultures, while the growth rate of Chlorella sp. shifted from positive in mono-cultures to negative in mixed cultures. Redundancy and variance partition analyses suggested that Chlorella sp. stimulate MC production in Microcystis aeruginosa and nutrient levels outshine temperature for toxin productions during competition. Lotka‒Volterra model revealed a positive correlation between the intensities of competitions and MC concentration. Our findings indicate that future algal bloom mitigation strategies should consider combined influence of temperature, nutrients, and interspecific competition due to their synergistic effects on MC productions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122308 | DOI Listing |
Toxics
January 2025
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is an emerging chlorinated disinfection byproduct (DBP) in bodies of water. However, this compound poses an unknown toxic effect on cyanobacteria. In this study, the toxicological mechanisms of 2,6-DCBQ in () were investigated through physiological and nontargeted metabolomic assessments.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia.
Grazing by zooplankton can regulate bloom-forming cyanobacteria but can also transfer toxin-producing cells, as well as toxic metabolites, to the food web. While laboratory investigations have provided extensive knowledge on zooplankton and toxic cyanobacteria interactions, information on zooplankton feeding on toxin-producing cyanobacteria in natural water bodies remains scarce. In this study, we quantified -specific synthase genes from the gut contents of various cladoceran and copepod taxa to assess the in situ crustacean community and taxon-specific ingestion of potentially toxic in Lake Peipsi, a large eutrophic lake in Estonia, Northern Europe.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Microbiology, Universität Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany.
The cyanobacterium causes harmful algal blooms that pose a major threat to human health and ecosystem services, particularly due to the prevalence of the potent hepatotoxin microcystin (MC). With their pronounced EPS layer, colonies also serve as a hub for heterotrophic phycosphere bacteria. Here, we tested the hypothesis that the genotypic plasticity in its ability to produce MC influences the composition and assembly of the phycosphere microbiome.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China. Electronic address:
The concomitant prevalence of toxic cyanobacteria blooms and plastic pollution in aquatic ecosystems is emerging as a pressing global water pollution dilemma. While toxic cyanobacteria and microplastics (MPs) can each independently exert significant impacts on aquatic biota, the magnitude and trajectory of the combined interactions remains rudimentary. In this study, we evaluated how MPs influences cyanobacterial stress on keystone grazer Daphnia, focusing on population, individual, biochemical and toxicogenomic signatures.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Electronic address:
The increasing frequency of cyanobacterial blooms, particularly those induced by Microcystis aeruginosa (M. aeruginosa), poses severe economic, ecological and health challenges due to the production of microcystins (MCs). Environmental parameters such as light and nutrient availability influence MCs production, while the role of dissolved organic matter (DOM) photochemical processes in regulating these remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!