A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discrimination of doubled Acoustic Emission events using neural networks. | LitMetric

Discrimination of doubled Acoustic Emission events using neural networks.

Ultrasonics

Institute of Rock Structure and Mechanics of the Czech Academy of Sciences, V Holešovičkách 94/41 182 09, Praha 8, Czech Republic; Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, Prague 6, Czech Republic. Electronic address:

Published: December 2024

In observatory seismology, the effective automatic processing of seismograms is a time-consuming task. A contemporary approach for seismogram processing is based on the Deep Neural Network formalism, which has been successfully applied in many fields. Here, we present a 4D network, based on U-net architecture, that simultaneously processes seismograms from an entire network. We also interpret Acoustic Emission data based on a laboratory loading experiment. The obtained data was a very good testing set, similar to real seismograms. Our Neural network is designed to detect multiple events. Input data are created by augmentation from previously interpreted single events. The advantage of the approach is that the positions of (multiple) events are exactly known, thus, the efficiency of detection can be evaluated. Even if the method reaches an average efficiency of only around 30% for the onset of individual tracks, average efficiency for the detection of double events was approximately 97% for a maximum target, with a prediction difference of 20 samples. Such is the main benefit of simultaneous network signal processing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2024.107439DOI Listing

Publication Analysis

Top Keywords

acoustic emission
8
neural network
8
multiple events
8
efficiency detection
8
average efficiency
8
events
5
network
5
discrimination doubled
4
doubled acoustic
4
emission events
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!