AI Article Synopsis

  • Heavy metal exposure (Fe, Zn, Cu, As) in Arabidopsis thaliana seedlings led to significant growth reduction (50-70%) and increased unfolded protein accumulation in the endoplasmic reticulum (ER), indicating ER stress.
  • Zn, Cu, and As specifically induced the unfolded protein response (UPR) genes, with Zn triggering bZIP28 expression, while Fe did not elicit a similar response.
  • The results highlight that heavy metals not only affect growth but also disrupt protein folding and ER function in plants, enhancing our understanding of how metal toxicity impacts plant health.

Article Abstract

Unfolded protein accumulation in the endoplasmic reticulum (ER) triggers ER stress, leading to a unique transcriptomic response called unfolded protein response (UPR). While ER stress is linked to various environmental stresses, its role in plant responses to heavy metal toxicity remains unclear. This study aimed to elucidate if heavy metals Fe, Zn, Cu, and As induce ER stress in plants. For this purpose, Arabidopsis thaliana seedlings were treated with Fe (200, 400 µM), Zn (500, 700 µM), Cu (25, 50 µM), and As (250, 500 µM) for 7 days, which resulted in 50-70% decrease in plant growth. All treatments increased insoluble protein levels, indicating unfolded protein accumulation, with the highest induction observed for 50 µM Cu treatment (fivefold). Expressions of genes involved in the perception and signaling of ER stress (IRE1, bZIP28, bZIP60, bZIP17) indicate that Zn toxicity specifically induces bZIP28 but not the IRE1 branch of UPR. All metals except Fe also induced genes associated with protein folding in the ER (BIP1, BIP3, and CNX) and ER-associated protein degradation (ERAD) (HRD1). This finding indicates Zn, Cu, and As but not Fe cause ER stress in plants. Furthermore, increased expression of ER oxidoreductase 1 (ERO1) suggests that metal toxicity also disrupts oxidative protein folding in the ER lumen. This study enhances our understanding of the intricate interplay between essential nutrients, metal toxicity, protein folding machinery, and ER stress, demonstrating that heavy metal toxicity has an ER stress component in plants alongside its established effects on energy metabolism, membrane integrity, and oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34780-yDOI Listing

Publication Analysis

Top Keywords

metal toxicity
20
unfolded protein
16
heavy metal
12
protein folding
12
protein
9
endoplasmic reticulum
8
protein response
8
arabidopsis thaliana
8
protein accumulation
8
stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!