Executioner caspases, such as caspase-3, are known to induce apoptosis, but in other contexts, they can control very different fates, including cell differentiation and neuronal plasticity. While hundreds of caspase substrates are known to be specifically targeted during cell death, we know very little about how caspase activity brings about non-apoptotic fates. Here, we report the first proteome identification of cleavage events in C2C12 cells undergoing myogenic differentiation and its comparison to undifferentiated or dying C2C12 cells. These data have identified new caspase substrates, including caspase substrates specifically associated with differentiation, and show that caspases are regulating proteins involved in myogenesis in myotubes, several days after caspase-3 initiated differentiation. Cytoskeletal proteins emerged as a major group of non-apoptotic caspase substrates. We also identified proteins with well-established roles in muscle differentiation as substrates cleaved in differentiating cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344277 | PMC |
http://dx.doi.org/10.1002/pro.5156 | DOI Listing |
Cancers (Basel)
January 2025
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
Background: Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China. Electronic address:
Novel lipophilic cationic derivatives including quaternary ammonium salt and triphenylphosphine series were designed and synthesized using diosgenin (1) and sarsasapogenin (2) as substrates to improve the cytotoxicity and selectivity. Most of the derivatives showed higher cytotoxicity against all cancer cell lines tested, compound 13 exhibited the most superior activity against A549 cells with an IC value of 0.95 μM, which was 34-fold of diosgenin.
View Article and Find Full Text PDFCytotechnology
February 2025
Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India.
Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades.
View Article and Find Full Text PDFProstate
January 2025
Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
Background: Caffeic acid (CA), a dietary compound, has been studied for its potential impact on inhibiting prostate cancer (PCa) growth. PCa is often associated with heightened expression of glyoxalase-1 (Glo-1), making it a target for potential therapeutic interventions. CA's mechanisms in suppressing Glo-1 expression and its effects on PCa cell proliferation are areas of interest for understanding its potential as an anticancer agent.
View Article and Find Full Text PDFAnticancer Drugs
August 2024
Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital.
This study aims to demonstrate the effect of toadflax (bufalin) on erlotinib resistance in nonsmall cell lung cancer (NSCLC) by inhibiting the fibroblast growth factor receptor (FGFR). The microfluidic mobility transferase and caliper mobility-shift assays were employed to detect the FGFR inhibition by bufalin and the binding reversibility. Further, the inhibitory effects of bufalin were determined in HCC827 and HCC827/ER cells in vitro, investigating relative FGFR overexpression by quantitative reverse transcriptase-PCR (RT-qPCR) and FGFR downstream proteins, that is, FGFR substrate 2 (FRS2), extracellular signal-regulated kinase (ERK), and S6 by western blot analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!