Chemical bath deposition (CBD) is an effective technique used to produce high-quality SnO electron transport layers (ETLs) employed in perovskite solar cells (PSCs). By optimizing the CBD process, high-quality SnO films are obtained with minimal oxygen vacancies and close energy level alignment with the perovskite layer. In addition, the 3D perovskite layers are passivated with n-butylammonium iodide (BAI), iso-pentylammonium iodide (PNAI), or 2-methoxyethylammonium iodide (MOAI) to form 3D/2D heterojunctions, resulting in defect passivation, suppressing ion migration and improving charge carrier extraction. As a result of these heterojunctions, the power conversion efficiency (PCE) of the PSCs increased from 21.39% for the reference device to 23.70% for the device containing the MOAI-passivated film. The 2D perovskite layer also provides a hydrophobic barrier, thus enhancing stability to humidity. Notably, the PNAI-based device exhibited remarkable stability, retaining approximately 95% of its initial efficiency after undergoing 1000-h testing in an N environment at room temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579978 | PMC |
http://dx.doi.org/10.1002/smll.202406929 | DOI Listing |
Energy Environ Sci
December 2024
Department of Physics, University of Oxford, Clarendon Laboratory Oxford OX1 3PU UK
It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials Science and Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, Georgia 30332, United States.
Bulky organic cations are used in perovskite solar cells as a protective barrier against moisture, oxygen, and ion diffusion. However, bulky cations can introduce thermal instabilities by reacting with the near-surface of the 3D perovskite forming low-dimensional phases, including 2D perovskites, and by diffusing away from the surface into the film. This study explores the thermal stability of CsFAPbI 3D perovskite surfaces treated with two anthracene salts─anthracen-1-ylmethylammonium iodide (AMAI) and 2-(anthracen-1-yl)ethylammonium iodide (AEAI)─and compares them with the widely used phenethylammonium iodide (PEAI).
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China.
Incorporating chlorine into the SnO electron transport layer (ETL) has proven effective in enhancing the interfacial contact between SnO and perovskite in perovskite solar cells (PSCs). However, previous studies have primarily focused on the role of chlorine in passivating surface trap defects in SnO, without considering its influence on the buried interface. Here, hydrochloric acid (HCl) is introduced as a chlorine source into commercial SnO to form Cl-capped SnO (Cl-SnO) ETL, aiming to optimize the buried interface of the PSC.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shanghai Institute of Technology, School of Chemical and Environmental Engineering, CHINA.
Laminating a free-standing carbon electrode film onto perovskite film is a promising method for fabricating HTM (hole transport material)-free carbon electrode perovskite solar cells (c-PSCs), offering more flexibility by decoupling the processes of carbon electrode and perovskite layer formation. However, the power conversion efficiency (PCE) of laminated HTM-free c-PSCs (<16.5%) remains lower compared to c-PSCs with printed carbon pastes (>20%), primarily due to poor interfacial contact between the perovskite and carbon layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!