AI Article Synopsis

  • The study focuses on Escherichia coli's YicC protein, a newly identified ribonuclease crucial for RNA processing in living organisms.
  • Researchers have characterized the structure of YicC in two forms: an unbound state (apo) and one bound to RNA, revealing unique structural features like a clamshell shape that are different from known ribonucleases.
  • Findings highlight the importance of a specific domain (DUF1732) in RNA binding and catalytic activity, providing new insights into the functions of the YicC RNase family.

Article Abstract

Processing of RNA is a key regulatory mechanism for all living systems. Escherichia coli protein YicC belongs to the well-conserved YicC family and has been identified as a novel ribonuclease. Here, we report a 2.8-Å-resolution crystal structure of the E. coli YicC apo protein and a 3.2-Å-cryo-EM structure of YicC bound to an RNA substrate. The apo YicC forms a dimer of trimers with a large open channel. In the RNA-bound form, the top trimer of YicC rotates nearly 70° and closes the RNA substrate inside the cavity to form a clamshell-pearl conformation that resembles no other known RNases. The structural information combined with mass spectrometry and biochemical data identified cleavage on the upstream side of an RNA hairpin. Mutagenesis studies demonstrated that the previously uncharacterized domain, DUF1732, is critical in both RNA binding and catalysis. These studies shed light on the mechanism of the previously unexplored YicC RNase family.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417398PMC
http://dx.doi.org/10.1093/nar/gkae717DOI Listing

Publication Analysis

Top Keywords

rna substrate
8
yicc
7
rna
6
structural insights
4
insights rna
4
rna cleavage
4
cleavage novel
4
novel family
4
family bacterial
4
bacterial rnases
4

Similar Publications

Despite the growing interest in mirror-image l-oligonucleotides, both as a robust nucleic acid analogue and as an artificial genetic polymer, their broader adoption in biochemical research and medicine remains hindered by challenges associated with the synthesis of long sequences, especially for l-RNA. Herein, we present a novel strategy for assembling long l-RNAs the joining of two or more shorter fragments using cross-chiral ligase ribozymes together with new substrate activation chemistry. We show that 5'-monophosphorylated l-RNA, which is readily prepared by solid-phase synthesis, can be activated by chemical attachment of a 5'-adenosine monophosphate (AMP) or diphosphate (ADP), yielding 5'-adenosyl(di- or tri-)phosphate l-RNA.

View Article and Find Full Text PDF

Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II.

Nat Struct Mol Biol

January 2025

Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.

View Article and Find Full Text PDF

Ribozymes that catalyze site-specific RNA modification have recently gained increasing interest for their ability to mimic methyltransferase enzymes and for their application to install molecular tags. Recently, we reported SAMURI as a site-specific alkyltransferase ribozyme using S-adenosylmethionine (SAM) or a stabilized analog to transfer a methyl or propargyl group to N of an adenosine. Here, we report the crystal structures of SAMURI in the postcatalytic state.

View Article and Find Full Text PDF

The unintended microbiological production of hydrogen sulphide (HS) poses a significant challenge in engineered systems, including sewage treatment plants, landfills and aquaculture systems. Although sulphur-rich amino acids and other substrates conducive to non-sulphate-based HS production are frequently present, the capacity and potential of various microorganisms to perform sulphate-free HS production remain unclear. In this study, we identify the identity, activity and genomic characteristics of bacteria that degrade cysteine to produce HS in anaerobic enrichment bioreactors seeded with material from aquaculture systems.

View Article and Find Full Text PDF

Dinucleases of the DEDD superfamily, such as oligoribonuclease, Rexo2 and nanoRNase C, catalyze the essential final step of RNA degradation, the conversion of di- to mononucleotides. The active sites of these enzymes are optimized for substrates that are two nucleotides long, and do not discriminate between RNA and DNA. Here, we identified a novel DEDD subfamily, members of which function as dedicated deoxydinucleases (diDNases) that specifically hydrolyze single-stranded DNA dinucleotides in a sequence-independent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!