A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of l-proline enriched alginate dialdehyde-gelatin hydrogel thin films for efficient wound healing applications. | LitMetric

Hydrogel-based wound management systems represent a promising avenue in tissue engineering for restoring and preserving the normal functionality of damaged tissues. Incorporating active components into hydrogel matrices enhances their suitability for biomedical applications. In this study, we investigated the integration of l-proline, a nonessential imino acid with largely unexplored roles in living systems, into alginate dialdehyde-gelatin hydrogel for wound healing purposes. Physicochemical properties of the resulting hydrogel film, termed ADAGLP, were meticulously evaluated, including wound healing efficacy in vitro and anti-biofilm activity against Gram-positive and Gram-negative microorganisms. Fourier-transform infrared spectroscopy (FTIR) analysis provided insights into the interaction between l-proline and ADAG. Films incorporating 0.5% l-proline were selected for comprehensive investigation. Comparative analysis revealed prolonged gelation time and increased water holding capacity of ADAGLP compared to ADAG films. Moreover, ADAGLP exhibited a significantly higher degradation rate (69.5 ± 3.2%) compared to ADAG (35.2 ± 1.6%). Remarkably, ADAGLP demonstrated cyto-compatibility, non-toxicity, and facilitated migration to the scratch area in vitro conditions. Notably, it exhibited potent anti-biofilm properties. Our findings suggest that ADAGLP hydrogel holds promise as a biomaterial for wound care, offering prolonged drug delivery and maintaining optimal moisture levels in wound areas. The incorporation of l-proline in the wound microenvironment may contribute to enhanced tissue remodeling, by inhibiting biofilm formation, further highlighting the potential of this hydrogel system in wound healing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08853282241276716DOI Listing

Publication Analysis

Top Keywords

wound healing
16
alginate dialdehyde-gelatin
8
dialdehyde-gelatin hydrogel
8
wound
8
healing applications
8
adag films
8
compared adag
8
hydrogel
6
adaglp
5
fabrication l-proline
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!