3-Cyanopyridine derivatives are known for exhibiting excellent anticancer activity due to their strong capability to inhibit various biological targets, including Pim-1 kinase, survivin, and tubulin polymerization. On the other hand, N-acylhydrazones (NAH) are known to be a very versatile motif in medicinal chemistry and drug design. Based on these data, we report in this paper, the synthesis of novel 3-cyanopyridines incorporating N-acyl hydrazine scaffold, the evaluation of their cytotoxicity on the breast (MCF-7) and ovarian (A-2780) cancer cell lines and their antioxidant properties. Excluding 4a and 4d, all tested molecules exhibited high cytotoxicity against A-2780, with IC values ranging from 1.14 to 1.76 µM. Conversely, only four molecules 3d, 4b, 4c, and 4d demonstrated cytotoxicity against MCF-7, with IC values ranging from 1.14 to 3.38 µM. On the other hand, all the tested molecules exhibited a moderate antioxidant capacity in both the DPPH and metal chelation assays. Docking and molecular dynamics studies revealed that 2d, 3d, and 4d are potential inhibitors of tubulin and the œstrogen receptor, which may explain their high cytotoxicity. These results are promising to study these newly synthesized 3-cyanopyridine-N-acylhydrazones in depth for use as potential anticancer candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.23819DOI Listing

Publication Analysis

Top Keywords

3-cyanopyridine derivatives
8
antioxidant properties
8
tested molecules
8
molecules exhibited
8
high cytotoxicity
8
values ranging
8
ranging 114
8
exploring anticancer
4
anticancer potential
4
potential 3-cyanopyridine
4

Similar Publications

A set of innovative N-amino-5-cyano-6-pyridones derivatives was developed and produced using one-pot three-component procedures. The evaluated molecules were examined for their antimicrobial efficacy. Based on the acquired findings, most of the investigated compounds had promising antimicrobial properties.

View Article and Find Full Text PDF

A novel series of cyanopyridines 7a-j were synthesized via a one-pot multicomponent reaction of arylidene 4 with ammonium acetate 5 and respective methylaryl/heterylketones 6a-j in ethanol using vanillin as a natural starting material. Moreover, the regioselective alkylation reaction was studied by the treatment of cyanopyridines 7a-f and 7j with CHI in the presence of KCO in DMF to afford O-methylcyanopyridines 8a-g (major) and N-methylcyanopyridines 9a-g (minor), whereas bipyridine 7h gave bipyridinium iodide salt 10. All of the designed cyanopyridines were evaluated as anti-breast cancer (MCF-7) cell lines via PIM Kinase inhibitory activity, and the results displayed that some of them showed high activities, especially compounds 7h and 8f, which showed excellent activities against MCF-7 with IC values of 1.

View Article and Find Full Text PDF

3-Cyanopyridine derivatives are known for exhibiting excellent anticancer activity due to their strong capability to inhibit various biological targets, including Pim-1 kinase, survivin, and tubulin polymerization. On the other hand, N-acylhydrazones (NAH) are known to be a very versatile motif in medicinal chemistry and drug design. Based on these data, we report in this paper, the synthesis of novel 3-cyanopyridines incorporating N-acyl hydrazine scaffold, the evaluation of their cytotoxicity on the breast (MCF-7) and ovarian (A-2780) cancer cell lines and their antioxidant properties.

View Article and Find Full Text PDF

Chagas disease (CD) is a parasitic neglected tropical disease (NTD) caused by the protozoan that affects 6 million people worldwide, often resulting in financial burden, morbidity, and mortality in endemic regions. Given a lack of highly efficient and safe treatments, new, affordable, and fit-for-purpose drugs for CD are urgently needed. In this work, we present a hit-to-lead campaign for novel cyanopyridine analogues as antichagasic agents.

View Article and Find Full Text PDF

An archaeal nitrile hydratase from the halophilic archaeon A07HB70 exhibits high tolerance to 3-cyanopyridine and nicotinamide.

Protein Expr Purif

February 2024

Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China. Electronic address:

Nitrile hydratase (NHase, EC 4.2.1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!