Primary malignancies of the central nervous system account for 2% of all cancers in adults and almost 15% in children under 15 years of age. The prognosis of brain anaplastic cancers and glioblastomas remains extremely poor, with devastating survival expectative, and new molecular markers and therapeutic targets are essential. Epigenetic changes constitute an extensive field for the development of new diagnostic and therapeutic strategies. Histone acetyl transferase-1 (HAT1) has merged as a potential prognostic marker and therapy target for different malignancies. Data repository analysis showed HAT1 mRNA overexpression in gliomas and has been described its alternative splicing in glioblastomas. Using immunohistochemical and aptahistochemical methods, we analyzed the expression of HAT1 in meningiomas, oligodendrogliomas, and astroglial cancers. We observed that HAT1 overexpression is associated with the most aggressive tumor types and the worse prognosis, as well as with a higher probability of early relapse in meningiomas. Its cytosolic localization correlates with tumor progression and prognosis. Aptamers, synthetic oligonucleotides capable to bind and inhibit a wide variety of targets, are considered as promising diagnostic and therapeutic tools. Aptahistochemistry using the aptamer apHAT610 offered superior results in comparison with the antibody used, as a good example of the potential of aptamers as diagnostic tools for histopathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423361 | PMC |
http://dx.doi.org/10.1369/00221554241272341 | DOI Listing |
Int J Mol Sci
December 2024
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
The histone acetylation modification is a conservative post-translational epigenetic regulation in fungi. It includes acetylation and deacetylation at the lysine residues of histone, which are catalyzed by histone acetyltransferase (HAT) and deacetylase (HDAC), respectively. The histone acetylation modification plays crucial roles in fungal growth and development, environmental stress response, secondary metabolite (SM) biosynthesis, and pathogenicity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:
Gluconobacter oxydans is an important chassis cell for one-step production of vitamin C. Previous studies reported that CRISPR/Cas12a is naturally inactivated in G. oxydans, but the specific mechanism remains unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFExpert Rev Anticancer Ther
January 2025
Department of Physiology, Pomeranian Medical University in Szczecin, Poland.
Introduction: Histone modifications are crucial epigenetic mechanisms for regulating gene expression. Histone acetyltransferases and deacetylases (HDACs) catalyze histone acetylation, a process that mediates transcription. Over recent decades, studies have demonstrated that targeting histone acetylation can be effective in cancer treatment, leading to the development and approval of several HDAC inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!