Objective: Predicting long-term functional outcomes shortly after a stroke is challenging, even for experienced neurologists. Therefore, we aimed to evaluate multiple machine learning models and the importance of clinical/radiological parameters to develop a model that balances minimal input data with reliable predictions of long-term functional independency.
Methods: Our study utilized data from the German Stroke Registry on patients with large anterior vessel occlusion who underwent endovascular treatment. We trained seven machine learning models using 30 parameters from the first day postadmission to predict a modified Ranking Scale of 0-2 at 90 days poststroke. Model performance was assessed using a 20-fold cross-validation and one-sided Wilcoxon rank-sum tests. Key features were identified through backward feature selection.
Results: We included 7485 individuals with a median age of 75 years and a median NIHSS score at admission of 14 in our analysis. Our Deep Neural Network model demonstrated the best performance among all models including data from 24 h postadmission. Backward feature selection identified the seven most important features to be NIHSS after 24 h, age, modified Ranking Scale after 24 h, premorbid modified Ranking Scale, intracranial hemorrhage within 24 h, intravenous thrombolysis, and NIHSS at admission. Narrowing the Deep Neural Network model's input data to these features preserved the high performance with an AUC of 0.9 (CI: 0.89-0.91).
Interpretation: Our Deep Neural Network model, trained on over 7000 patients, predicts 90-day functional independence using only seven clinical/radiological features from the first day postadmission, demonstrating both high accuracy and practicality for clinical implementation on stroke units.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514938 | PMC |
http://dx.doi.org/10.1002/acn3.52185 | DOI Listing |
Acad Radiol
January 2025
Department of Radiology and Intervention, Hospital Pakar Kanak-Kanak (UKM Specialist Children's Hospital), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia (Y.L., F.Y.L., J.N.C., H.A.H., H.A.M.); Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia (H.A.M.). Electronic address:
Rationale And Objectives: Extrathyroidal extension (ETE) and BRAF mutation in papillary thyroid cancer (PTC) increase mortality and recurrence risk. Preoperative identification presents considerable challenges. Although radiomics has emerged as a potential tool for identifying ETE and BRAF mutation, systematic evidence supporting its effectiveness remains insufficient.
View Article and Find Full Text PDFJ Pediatr (Rio J)
January 2025
Department of General Surgery and Neonatal Surgery, Liangjiang Wing, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China. Electronic address:
Objective: This study aimed to develop a predictive model using a random forest algorithm to determine the likelihood of postoperative adhesive small bowel obstruction (ASBO) in infants under 3 months with intestinal malrotation.
Methods: A machine learning model was used to predict postoperative adhesive small bowel obstruction using comprehensive clinical data extracted from 107 patients with a follow-up of at least 24 months. The Boruta algorithm was used for selecting clinical features, and nested cross-validation tuned and selected hyper-parameters for the random forest model.
Comput Biol Chem
January 2025
College of Artificial Intelligence, Tianjin University of Science and Technology, No. 9, 13th Street, Tianjin Economic-Technological Development Area, Tianjin, 300457, China. Electronic address:
The enzyme turnover number (k) is crucial for understanding enzyme kinetics and optimizing biotechnological processes. However, experimentally measured k values are limited due to the high cost and labor intensity of wet-lab measurements, necessitating robust computational methods. To address this issue, we propose PreTKcat, a framework that integrates pre-trained representation learning and machine learning to predict k values.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biological and Agricultural Engineering, University of Arkansas, United States of America. Electronic address:
The increasing global demand for meat and dairy products, fueled by rapid industrialization, has led to the expansion of Animal Feeding Operations (AFOs) in the United States (US). These operations, often found in clusters, generate large amounts of manure, posing a considerable risk to water quality due to the concentrated waste streams they produce. Accurately mapping AFOs is essential for effective environmental and disease management, yet many facilities remain undocumented due to variations in federal and state regulations.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou 510030, China.
The long-term presence of antibiotics in the aquatic environment will affect ecology and human health. Techniques for determining antibiotics are often time-consuming, labor-intensive and costly, and it is desirable to seek new methods to achieve rapid prediction of antibiotics. Many scholars have shown the effectiveness of machine learning in water quality prediction, however, its effectiveness in predicting antibiotic concentrations in the aquatic environment remains inconclusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!