Assessing the impact of triiodothyronine treatment on the lung microbiome of mice with pulmonary fibrosis.

BMC Pulm Med

State Key Laboratory of Cell Differentiation and Regulation; Henan International Joint Laboratory of Pulmonary Fibrosis; Henan Center for Outstanding Overseas Scientists of Organ Fibrosis; Pingyuan Laboratory; College of Life Science , Henan Normal University, No.46 Jianshe Road, Xinxiang City, 453007, Henan, China.

Published: August 2024

Background: Idiopathic pulmonary fibrosis (IPF), an interstitial lung disease, is characterized by the exacerbation of progressive pulmonary fibrosis (PF). IPF primarily affects older individuals and can lead to respiratory failure. This study aimed to assess the effects of triiodothyronine (T) treatment on the lung microbiome of mice with PF.

Methods: Mice were perfused with bleomycin (BLM) to establish a PF model. Using a randomized design, 40 female specific pathogen-free (SPF) C57BL6/N mice were divided into four groups: saline, saline + T, BLM, and BLM + T. Histological morphology was assessed through Hematoxylin and Eosin staining as well as Masson's Trichrome staining. For the identification of lung bacteria, 16S rRNA gene sequencing was employed. An Enzyme-Linked Immunosorbent Assay was used to measure total T (TT), free T (FT, and reverse T (rT) levels in the peripheral serum.

Results: T treatment ameliorated BLM-induced lung fibrosis and structural damage. The microbiome experienced a decrease in the abundance of Proteobacteria, Bacteroides, and Actinomycetes and an increase in the abundance of Firmicutes when exposed to BLM; however, T treatment reversed this effect. The four groups showed no significant difference in alpha microbiome diversity (P > 0.05). Serum concentrations of TT and FT were positively correlated with microbiome abundance (P < 0.05). Administration of T enhanced the microbiota in PF without affecting the diversity and biological functions of the microbiome (P > 0.05).

Conclusion: The administration of T demonstrated a favorable impact on the lung microbiota of mice afflicted with PF, thereby partially substantiating the potential role of T as a therapeutic agent in the management of PF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344337PMC
http://dx.doi.org/10.1186/s12890-024-03214-3DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
12
triiodothyronine treatment
8
treatment lung
8
lung microbiome
8
microbiome mice
8
fibrosis ipf
8
lung
6
microbiome
5
mice
5
assessing impact
4

Similar Publications

Pulmonary fibrosis as the sole manifestation of anti-Ku antibody positivity in the absence of myositis: A case report.

Respir Med Case Rep

January 2025

Department of Rheumatology of Lucania - UOSD of Rheumatology, "Madonna delle Grazie" Hospital, Matera, Italy.

Background: Anti-Ku antibodies are autoantibodies directed against the Ku protein complex involved in DNA repair. They are typically associated with overlap syndromes featuring polymyositis and systemic sclerosis. Isolated pulmonary involvement without myositis is exceedingly rare.

View Article and Find Full Text PDF

Anti-glomerular basement membrane disease is a rare small vessel vasculitis caused by the deposition of immunoglobulin G (IgG) autoantibodies in the basement membrane of glomerular capillaries and lung alveoli, leading to rapidly progressive renal failure and/or alveolar hemorrhage. We report the case of an 83-year-old female patient presenting with uremic symptoms, rapidly progressive kidney failure, and a high titer of anti-glomerular basement membrane antibodies. Given the urgent need for kidney replacement therapy, the substantial fibrosis and glomerular scarring observed in the kidney biopsy suggesting a chronic process, and the absence of pulmonary involvement, neither immunosuppressive treatment nor plasmapheresis was initiated, since a low likelihood of a favorable response to these interventions was expected.

View Article and Find Full Text PDF

Background Interstitial lung diseases (ILDs) are a group of non-infectious diseases characterized by interstitial inflammation and fibrosis on histological examination. Gastroesophageal reflux disease (GERD) is common in this patient population, but whether there is a causal or coincidental relationship is not yet clear. It still remains unsettled how to diagnose GERD, and the role of different treatment modalities for GERD, in these lung disorders.

View Article and Find Full Text PDF

Pulmonary fibrosis significantly contributes to the pathogenesis of acute respiratory distress syndrome (ARDS), markedly increasing patient mortality. Despite the established anti-fibrotic effects of mesenchymal stem cells (MSCs), numerous challenges hinder their clinical application. A recent study demonstrated that microvesicles (MVs) from MSCs (MSC-MVs) could attenuate ARDS-related pulmonary fibrosis and enhance lung function hepatocyte growth factor mRNA transcription.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease. It is characterized by inflammation and fibrosis in the lung parenchyma and interstitium. Given its poor prognosis and limited treatment options, understanding the underlying molecular mechanisms is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!