This study evaluates the sustainability of spreading wastewater or sewage sludge on agricultural land, balancing benefits with contamination risks. Conventional ecological risk indices often fail to address the long-term accumulation of metals in soils. We investigate the feasibility of spreading based on current knowledge of potentially contaminating metals and their behavior in soil. We analyzed the speciation of metals (Ag, Cd, Co, Cr, Cu, Ni, Pb, Ti, Zn) through sequential extraction in sludge, treated wastewater, and soils after 14 years of application of sewage sludge and treated wastewater issued from an Algerian wastewater treatment plant. We introduce a Time to Critical Content Index (TCCI) that calculates the time required to reach critical levels of potentially mobile metals, considering total metal content and speciation. The TCCI takes into account product knowledge, soil characteristics, metal behavior, ecological/toxicological thresholds, and regulations. Applied to our case study, the TCCI indicates that spreading sewage sludge can continue despite metal contents exceeding regulatory ceiling values. The index serves as a precautionary measure, adaptable to evolving knowledge, providing a comprehensive framework for sustainable agricultural practices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343905 | PMC |
http://dx.doi.org/10.1007/s10661-024-12999-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!