Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Autoencoders are dimension reduction models in the field of machine learning which can be thought of as a neural network counterpart of principal components analysis (PCA). Due to their flexibility and good performance, autoencoders have been recently used for estimating nonlinear factor models in finance. The main weakness of autoencoders is that the results are less explainable than those obtained with the PCA. In this paper, we propose the adoption of the Shapley value to improve the explainability of autoencoders in the context of nonlinear factor models. In particular, we measure the relevance of nonlinear latent factors using a forecast-based Shapley value approach that measures each latent factor's contributions in determining the out-of-sample accuracy in factor-augmented models. Considering the interesting empirical instance of the commodity market, we identify the most relevant latent factors for each commodity based on their out-of-sample forecasting ability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344066 | PMC |
http://dx.doi.org/10.1038/s41598-024-70342-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!