Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural and high-quality biomass-based coating films are considered promising packaging to consumers. However, the poor mechanical properties and weak antimicrobial activity of biomass materials have limited their practical application. A cleaner and low-cost strategy is used to prepare antimicrobial, self-recovery, and biocompatible coating films using tamarind kernel powder (TKP) and chitosan (CS). The TKP protein and chitosan chains were covalently cross-linked with tetrakis(hydroxymethyl)phosphonium chloride (THPC) to form a three-dimensional network based on THPC-amine dynamic bonds, and act as a sacrificial bond. Then, the hydrogen bond forms an interpenetrating network to build a strong multi-network film. Thus, the THPC multi-crosslinking TKP based films showed enhanced stretchable property (increased from 3.23 % to 77.54 %), and self-recovery after 30 min of recovery. Additionally, the film has been found to exhibit low water vapor permeability, low oxygen transmittance rate, and excellent antimicrobial efficiency (maximum inhibition zones: 24.39 mm). Moreover, the prepared films were demonstrated to be biocompatible and non-hemolytic based on cell viability and hemolytic activity assays. The method described herein could broaden the scope of biomass-based materials in the realm of antimicrobial coating films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134949 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!