Hollow carbon spheres (HCSs) have attracted broad attention in aqueous zinc-ion hybrid supercapacitors (ZIHSCs) owing to their distinctive properties. However, traditional methods for fabricating HCSs face limitations, including complex multistep procedures, the use of corrosive chemicals, and stringent reaction conditions. In this work, biomass-based poly(γ-glutamic acid)/Ni/melamine/chitosan nanoparticles were used as the precursors to fabricate N/O co-doped hollow graphite carbon spheres (HGCSs). Thanks to the appropriate hydrophilic characteristic, specific surface area, pore size distribution, and electrical conductivity, the fabricated HGCSs cathode exhibited superior electrochemical properties. The assembled HGCSs-based ZIHSCs device showed a satisfactory specific capacitance of 133.2 mAh·g at a current density of 1.0 A·g, high energy densities of 75.2 Wh·kg at 10,000 W·kg and 107.9 Wh·kg at 1000 W·kg, respectively. Additionally, the assembled HGCSs-based ZIHSCs device displayed an exceptional cycling stability, enduring up to 10,000 cycles at 0.5 A·g with a capacity retention rate of 98.1 %. This work provides a facile and novel strategy to prepare superior electrochemical performance biomass-based HGCSs cathode for ZIHSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134930 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Donghua University, No.2999, North Renmin Road, Songjiang District, Shanghai, CHINA.
Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.
View Article and Find Full Text PDFSci Rep
January 2025
Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, Zhejiang, China.
Electrocatalytic materials with dual functions of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have received increasing attention in the field of zinc-air batteries (ZABs) research. In this study, bifunctional CoNC@NCXS catalysts were prepared by anchoring Co and N co-doped CoNC on N-doped carbon xerogel sphere (NCXS) based on the spatially confined domain effect and in-situ doping technique. CoNC@NCXS exhibited excellent ORR/OER activity in alkaline electrolytes with the ORR onset potential of 0.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States.
ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.
View Article and Find Full Text PDFACS Omega
January 2025
School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
This work explores the enhancement of EMI shielding efficiency of polyurethane (PU) foam by loading multiwall carbon nanotube (MWCNTs)-decorated hollow glass microspheres (HGMs). MWCNT was coated onto the HGM surface by a simple solution casting technique. The coated HGM particles were loaded in PU foams, resulting in an even dispersion of MWCNT in the foam struts, thereby forming an interconnected conductive network in the polymer matrix.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China.
The selection of suitable raw materials as adsorbents is a key factor in effectively removing phosphorus from water. As an industrial by-product, soda residue exhibits high porosity and surface area, which can effectively adsorb pollutants. Magnetic lanthanum-iron soda residue (La-Fe-CSR) was synthesized using the co-precipitation method, and its characterization and mechanism for removing phosphate were thoroughly investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!