Administration of human pancreatic GH-releasing factor 1-40 (hpGRF-40) at doses of 1, 10, 20, 100, and 500 ng/100 g BW sc induced in 10-day-old rats a clear-cut rise in plasma GH 15-min post-injection, although the effect was not dose-related and peak GH levels were already present after the lowest GRF dose. In 25-day-old rats, hpGRF induced only a slight rise in plasma GH at the dose of 500 ng/100 g BW sc, whereas it was completely ineffective at the lower doses. In 5-day-old rats, hpGRF (20 ng/100 g BW sc twice daily), administered for 5 days, induced a marked rise in pituitary GH content and plasma GH levels determined 14 h after the last hpGRF injection. In these rats, at the end of treatment, a challenge hpGRF dose (20 ng/100 g BW) induced a rise in plasma GH significantly higher than in infant rats receiving only the challenge hpGRF dose. These data show that: 1) pituitary responsiveness to hpGRF is strikingly higher in infant than in post-weaning rats; 2) in infant rats, subacute administration of hpGRF stimulates GH synthesis and release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/endo-116-2-574 | DOI Listing |
Vaccines (Basel)
December 2024
Drug Safety Research and Development, Pfizer Research & Development, Pearl River, NY 10965, USA.
: Respiratory syncytial virus (RSV) infections usually cause mild, cold-like symptoms in most people, but are a leading infectious disease causing infant death and hospitalization and can result in increased morbidity and mortality in older adults and at-risk individuals. Pfizer has developed Abrysvo, an unadjuvanted bivalent recombinant protein subunit vaccine containing prefusion-stabilized fusion (F) proteins representing RSV A and RSV B subgroups (RSVpreF). It is the only RSV vaccine approved for both maternal immunization to protect infants and active immunization of older adults (≥60 years) and 18-59-year-old individuals with high-risk conditions for prevention of RSV disease.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Department of Pediatrics, Zhongda Hospital, The School of Medicine, Southeast University, No. 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China.
Perinatal white matter injury (WMI), which is prevalent in premature infants, involves M2 microglia affecting oligodendrocyte precursor cells (OPCs) through exosomes, promoting OPC growth and reducing WMI. The molecular mechanism of WMI remains unclear, and this study explored the role of M2 microglia-derived exosomes in WMI. A tMCAO rat model was constructed to simulate WMI characteristics in vivo.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
School of Psychology, University of New South Wales, Sydney, Australia. Electronic address:
The opioid crisis continues to escalate, disproportionately affecting women of reproductive age. Traditionally the first line of treatment for pregnant women with opioid use disorder is the mu-opioid receptor agonist methadone. However, in recent years, the use of buprenorphine as a replacement therapy has increased as it has fewer side-effects and longer duration of action.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA. Electronic address:
Hypoxic-ischemic (HI) brain injury is a common neurological problem in neonates. The postsynaptic density protein-95 (PSD-95) is an excitatory synaptic scaffolding protein that regulates synaptic function, and represents a potential therapeutic target to attenuate HI brain injury. Syn3 and d-Syn3 are novel high affinity cyclic peptides that bind the PDZ3 domain of PSD-95.
View Article and Find Full Text PDFNeurosci Res
January 2025
RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan. Electronic address:
In mammals, lactation is essential for the health and growth of infants and supports the formation of the mother-infant bond. Breastfeeding is mediated by the neurohormone oxytocin (OT), which is released into the bloodstream in a pulsatile manner from OT neurons in the hypothalamus to promote milk ejection into mammary ducts. While classical studies using anesthetized rats have illuminated the activity patterns of putative OT neurons during breastfeeding, the molecular, cellular, and neural circuit mechanisms driving the synchronous pulsatile bursts of OT neurons in response to nipple stimulation remain largely elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!