Modelling insertion behaviour of PVP (Polyvinylpyrrolidone) and PVA (Polyvinyl Alcohol) microneedles.

Int J Pharm

Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom. Electronic address:

Published: October 2024

A comprehensive investigation into the effects of nonlinear material behaviour of polymeric (MN) and skin on the dynamics of the MN insertion in skin was undertaken in this study using experiments and numerical simulations. The nonlinearity of the material behaviour was incorporated by employing the Ramberg-Osgood and neo-Hookean equations for stress-strain relationships for the MN materials and skin, respectively. For this purpose, a characteristic type of dissolving MN array was selected. This type of MN is made by a combination of poly(vinyl alcohol) and poly(vinyl pyrrolidone). The numerical simulations were validated using experimental investigations where the MNs were fabricated using laser-engineered silicone micromould templates technology. Young's modulus, Poisson's ratio, and compression breaking force for the MN polymers were determined using a texture analyser. The alignment between experimental findings and simulation data underscores the accuracy of the parameters determined through mechanical testing and mathematical calculations for both MN materials (PVP/PVA) and skin behaviour during the MN insertion. This study has demonstrated a strong alignment between the experimental findings and computational simulations, confirming the accuracy of the established parameters for MNs and skin interactions for modelling MN insertion behaviour in skin, providing a solid foundation for future research in this area.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.124620DOI Listing

Publication Analysis

Top Keywords

modelling insertion
8
insertion behaviour
8
polyvinyl alcohol
8
material behaviour
8
numerical simulations
8
alignment experimental
8
experimental findings
8
skin
6
behaviour
5
behaviour pvp
4

Similar Publications

Count-rate management in I SPECT/CT calibration.

EJNMMI Phys

January 2025

Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden.

Background: System calibration is essential for accurate SPECT/CT dosimetry. However, count losses due to dead time and pulse pileup may cause calibration errors, in particular for I, where high count rates may be encountered. Calibration at low count rates should also be avoided to minimise detrimental effects from e.

View Article and Find Full Text PDF

Objective: To analyze the relationship between body fat, motor skills, and physical fitness in children and adolescents.

Methods: 216 children and adolescents (143 males and 73 females, aged 5-15 years) from a social project composed this study. Body mass and height were measured to calculate the body mass index (BMI).

View Article and Find Full Text PDF

Background: Precise and accurate glenoid preparation is important for the success of shoulder arthroplasty. Despite advancements in preoperative planning software and enabling technologies, most surgeons execute the procedure manually. Patient-specific instrumentation (PSI) facilitates accurate glenoid guide pin placement for cannulated reaming; however, few commercially available systems offer depth of reaming control.

View Article and Find Full Text PDF

Eccentric Reaming is Superior to Augmented Components in B2 Glenoids: a Biomechanical study.

J Shoulder Elbow Surg

January 2025

Division of Orthopaedic Surgery, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada. Electronic address:

Introduction: Primary glenohumeral arthritis is typically associated with glenoid retroversion and posterior bone loss. Glenoid component fixation remains a weak link in the survivorship of anatomical total shoulder arthroplasty, particularly in the B2 glenoid. The aim of this study was to compare biomechanical properties of two glenoid preparation techniques in a B2 glenoid bone loss model.

View Article and Find Full Text PDF

Acetate is a biological anion with many applications in the chemical and food industries. In addition to being a common microbial fermentative end-product, acetate can be produced by photosynthetic cyanobacteria from CO using solar energy. Using wild-type cells of the unicellular model cyanobacterium Synechocystis PCC 6803 only low levels of acetate are observed outside the cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!