MicroRNA expression profiles reveal wool development and fineness regulation in Gansu alpine fine-wool sheep.

Genomics

Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, China. Electronic address:

Published: September 2024

The development of wool has a complex regulatory mechanism both influenced by genetic and environmental factors. MicroRNAs (miRNA) were involved in various biological processes of animals, and may play an important role in the regulation of wool development. In this study, we comprehensively analyzed and identified the histological parameters of hair follicles, as well as the miRNAs, target genes, pathways, and Gene Ontology terms related to wool fineness regulation and wool growth and development using HE staining and RNA-Seqs methods. Both coarse (group C, mean fiber diameter (MFD) = 22.26 ± 0.69 μm, n = 6) and fine (group F, MFD = 16.91 ± 0.29 μm, n = 6) of Gansu alpine fine-wool sheep with different wool fineness were used in this study. The results showed that the primary follicle diameter and secondary wool fiber diameter in group C were significantly higher than those in group F (P < 0.05). And the number of primary and secondary hair follicles in group C was significantly lower than that in group F (P < 0.05). Furthermore, a total of 67 DE miRNAs and 290 potential DE miRNAs target genes were screened in the skin tissues of sheep from groups F and C, and some potential target genes related to wool fineness regulation were screened, such as CDH2, KRT82, FOXN1, LOC101106296, KRT20, MCOLN3, KRT71, and TERT. These genes were closely related to Glutathione metabolism, epidermal cell differentiation, keratinization, and regulation of hair cycle. Moreover, the regulatory network of miRNAs-mRNAs suggested that miRNAs (miR-129-x, novel m0079-3p, miR-2484-z, novel m0025-5P, etc.) may play a key role in the wool development and wool fineness regulation of Gansu alpine fine-wool sheep. In summary, this study expands the existing miRNAs database and provides new information for studying the regulation of wool development in Gansu alpine fine wool sheep.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2024.110922DOI Listing

Publication Analysis

Top Keywords

wool development
8
fineness regulation
8
gansu alpine
8
alpine fine-wool
8
fine-wool sheep
8
regulation wool
8
wool fineness
8
fiber diameter
8
wool
7
microrna expression
4

Similar Publications

Wool quality is a crucial economic trait in Angora rabbits, closely linked to hair follicle (HF) growth and development. Therefore, understanding the molecular mechanisms of key genes regulating HF growth and wool fiber formation is essential. In the study, fine- and coarse-wool groups were identified based on HF morphological characteristics of Zhexi Angora rabbits.

View Article and Find Full Text PDF

Dorper sheep is popular among farming enterprises with strong adaptability, disease resistance, and roughage tolerance, and an unique characteristic of natural shedding of wool. In a large number of observations on experimental sheep farms, it was found that the wool of some sheep still had not shed after May, thus manual shearing was required. Therefore, understanding the molecular mechanisms of normal hair follicles (HFs) development is crucial to revealing the improvement of sheep wool-related traits and mammalian skin-related traits.

View Article and Find Full Text PDF

Tobacco Fusarium root rot is caused by various Fusarium species, with eleven species reported, among which F. oxysporum and F. solani are main responsible in China (Yang et al.

View Article and Find Full Text PDF

Prioritizing cases from a multi-institutional cohort for a dataset of pathologist annotations.

J Pathol Inform

January 2025

U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, MD, United States of America.

Objective: With the increasing energy surrounding the development of artificial intelligence and machine learning (AI/ML) models, the use of the same external validation dataset by various developers allows for a direct comparison of model performance. Through our High Throughput Truthing project, we are creating a validation dataset for AI/ML models trained in the assessment of stromal tumor-infiltrating lymphocytes (sTILs) in triple negative breast cancer (TNBC).

Materials And Methods: We obtained clinical metadata for hematoxylin and eosin-stained glass slides and corresponding scanned whole slide images (WSIs) of TNBC core biopsies from two US academic medical centers.

View Article and Find Full Text PDF

Dyeing of synthetic fiber-based wool blended fabrics in supercritical carbon dioxide.

Sci Rep

December 2024

Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, 12622, Giza, Egypt.

Development of supercritical carbon dioxide (SC-CO) dyeing technology for natural fabrics and their blended fabrics is essential for the textile industry due to environmental and economic considerations. Wool (W), polyester (PET) and nylon (N) fabrics and their wool/polyester (W/PET) and wool/nylon (W/N) blended fabrics were dyed in SC-CO medium with a synthesized reactive disperse dye containing a vinylsulphone (VS) reactive group, which behaves as a disperse dye for synthetic fibers and a reactive dye for protein fibers. The SC-CO dyeing performance of all fabrics was investigated in terms of color strength, fixation, colorimetric and fastness measurements and compared with the conventional aqueous dyeing method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!