Aquatic ecosystems face significant exposure to endocrine-disrupting chemicals (EDCs), which can mimic, block, or alter the synthesis of endogenous hormones. Bisphenol A (BPA), a widely known EDC, has been phased out from consumer products due to concerns about its potential impacts on human health. In its place, bisphenol S (BPS), an organic compound, has been increasingly used in the production of polycarbonate plastics, epoxy resins, thermal receipt papers, and currency. Vitellogenin (Vtg), a yolk precursor protein synthesized in the liver and present in oviparous fish, particularly males, serves as a pertinent biomarker for studying the effects of estrogenic EDCs on fish. This study aimed to assess the impact of BPS on reproductive parameters and hepatic vitellogenin expression in Channa striatus. The LC50 of BPS was determined to be 128.8 mg/L. Experimental groups included control and BPS-exposed fish, with sub-lethal concentrations of BPS (1 mg/L, 4 mg/L, and 12 mg/L) administered and effects monitored at seven- and twenty-one-day intervals. Significant decreases in gonadosomatic index (GSI), ova diameter, and fecundity were observed in BPS-exposed Channa striatus. Hepatic Vtg mRNA expression was downregulated in female and upregulated in male following BPS exposure. Serum hormone analysis confirmed the estrogenic activity of BPS. These findings underscore BPS's ability as an endocrine disruptor to interfere with hormone synthesis and disrupt spermatogenesis and oogenesis processes in Channa striatus. This research contributes to understanding the endocrine-disrupting effects of BPS on aquatic organisms, highlighting potential ecological implications and the need for continued monitoring and regulatory considerations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.reprotox.2024.108690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!