Urinary tract infections (UTIs) are a worldwide health problem. Fast and accurate detection of bacterial infection is essential to provide appropriate antibiotherapy to patients and to avoid the emergence of drug-resistant pathogens. While the gold standard requires 24 h to 48 h of bacteria culture prior to MALDI-TOF species identification, we propose a culture-free workflow, enabling bacterial identification and quantification in less than 4 h using 1 ml of urine. After rapid and automatable sample preparation, a signature of 82 bacterial peptides, defined by machine learning, was monitored in LC-MS, to distinguish the 15 species causing 84% of the UTIs. The combination of the sensitivity of the SRM mode on a triple quadrupole TSQ Altis instrument and the robustness of capillary flow enabled us to analyze up to 75 samples per day, with 99.2% accuracy on bacterial inoculations of healthy urines. We have also shown our method can be used to quantify the spread of the infection, from 8 × 10 to 3 × 10 CFU/ml. Finally, the workflow was validated on 45 inoculated urines and on 84 UTI-positive urine from patients, with respectively 93.3% and 87.1% of agreement with the culture-MALDI procedure at a level above 1 × 10 CFU/ml corresponding to an infection requiring antibiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532907PMC
http://dx.doi.org/10.1016/j.mcpro.2024.100832DOI Listing

Publication Analysis

Top Keywords

machine learning
8
identification quantification
8
urinary tract
8
tract infections
8
bacterial
5
lc-srm combined
4
combined machine
4
learning enables
4
enables fast
4
fast identification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!