Superficial cartilage defects represent the most prevalent type of cartilage injury encountered in clinical settings, posing significant treatment challenges. Here, we fabricated a cartilage extracellular matrix mimic hydrogel (GHC, consisting of Gelatin, Hyaluronic acid, and Chondroitin sulfate) to avoid the exacerbation of cartilage deterioration, which is often driven by the accumulation of reactive oxygen species (ROS) and a pro-inflammatory microenvironment. The GHC hydrogel exhibited multifunctional properties, including in situ formation, tissue adhesiveness, anti-ROS capabilities, and the promotion of chondrogenesis. The enhancement of tissue adhesion was achieved by chemically modifying hyaluronic acid and chondroitin sulfate with o-nitrobenzene, enabling a covalent connection to the cartilage surface upon light irradiation. In vitro characterization revealed that GHC hydrogel facilitated chondrocyte adhesion, migration, and differentiation into cartilage. Additionally, GHC hydrogels demonstrated the ability to scavenge ROS in vitro and inhibit the production of inflammatory factors by chondrocytes. In the animal model of superficial cartilage injury, the hydrogel effectively promoted cartilage ECM regeneration and facilitated the interface integration between the host tissue and the material. These findings suggest that the multifunctional GHC hydrogels hold considerable promise as a strategy for cartilage defect repair. STATEMENT OF SIGNIFICANCE: Superficial cartilage defects represent the most prevalent type of cartilage injury encountered in the clinic. Previous cartilage tissue engineering materials are only suitable for full-thickness cartilage defects or osteochondral defects. Here, we developed a multifunctional GHC hydrogel composed of gelatin, hyaluronic acid, and chondroitin sulfate, which are natural cartilage extracellular matrix components. The drug-free and cell-free hydrogel not only avoids immune rejection and drug toxicity, but also shows good mechanical properties and biocompatibility. More importantly, the GHC hydrogel could adhere tightly to the superficial cartilage defects and promote cartilage regeneration while protecting against oxidation. This natural ingredients and multifunctional hydrogel is a potential material for repairing superficial cartilage defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2024.08.018 | DOI Listing |
Acta Orthop
January 2025
Clinical Orthopaedic Research Hvidovre, Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
Background And Purpose: In contemporary medial unicompartmental knee arthroplasty (mUKA), non-lateral patellofemoral osteoarthritis (PFOA) is not considered a contraindication. However, we still lack knowledge on the association of PFOA severity on patient reported outcome measures (PROMs) after mUKA. We aimed to examine the association between PFOA severity and PROM-score changes after mUKA.
View Article and Find Full Text PDFHeliyon
December 2024
Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
Knee Osteoarthritis (KOA) is characterized by phenotypic alterations, apoptosis, and the breakdown of the extracellular matrix (ECM) in the superficial articular cartilage cells. The inflammatory response activates the Endoplasmic Reticulum Stress (ERS) signaling pathway, which plays a critical role in the pathophysiology and progression of KOA. Chondrocytes stimulated by thapsigargin(TG)exhibit heightened ERS and significantly increase the expression of ERS-associated proteins.
View Article and Find Full Text PDFCurr Opin Otolaryngol Head Neck Surg
December 2024
Purpose Of Review: To summarize current evidence regarding the indication of adjuvant treatment after transoral laser microsurgery (TOLMS).
Recent Findings: Apart from well known risk factors, margins represent the key point in the decision-making. If margins are affected, additional treatment is mandatory.
Arch Orthop Trauma Surg
January 2025
Medical University of Graz, Graz, Austria.
Background: The role of local infiltration anesthesia (LIA) in knee surgery is significant. LIA can be more potent than a nerve block, but without the downsides. A wide range of agents are used for LIA, including some off-label medications such as dexmedetomidine and ropivacaine.
View Article and Find Full Text PDFSci Rep
December 2024
School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.
Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!