Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Men generally favor carbohydrate metabolism, while women lean towards lipid metabolism, resulting in significant sex-based differences in energy oxidation across various metabolic states such as fasting and feeding. These differences are influenced by body composition and inherent metabolic fluxes, including increased lipolysis rates in women. However, understanding how sex influences organ-specific metabolism and systemic manifestations remains incomplete. To address these gaps, we developed a sex-specific, whole-body metabolic model for feeding and fasting scenarios in healthy young adults. Our model integrates organ metabolism with whole-body responses to mixed meals, particularly high-carbohydrate and high-fat meals. Our predictions suggest that differences in liver and adipose tissue nutrient storage and oxidation patterns drive systemic metabolic disparities. We propose that sex differences in fasting hepatic glucose output may result from the different handling of free fatty acids, glycerol, and glycogen. We identified a metabolic pathway, possibly more prevalent in female livers, redirecting lipids towards carbohydrate metabolism to support hepatic glucose production. This mechanism is facilitated by the TG-FFA cycle between adipose tissue and the liver. Incorporating sex-specific data into multi-scale frameworks offers insights into how sex modulates human metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.109024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!