Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study.

J Hazard Mater

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

Published: October 2024

AI Article Synopsis

  • The study looked at how the rotting of certain plants affects the cleanup of toxic antimony in water using a chemical called Polyferric sulfate (PFS).
  • It was found that when plants decompose, they release more antimony into the water, which makes it harder to control the pollution.
  • This means that the effectiveness of PFS is reduced, and there’s a higher risk of antimony harming the water and the environment.

Article Abstract

Polyferric sulfate (PFS) coagulation has proven to be effective in addressing antimony (Sb) water pollution accidents; however, the impact of waterside plant decomposition on its effectiveness has not been adequately elucidated. This study investigated the effects of Alternanthera philoxeroides (AP) and Digitaria sanguinalis (DS) decomposition on Sb cycling after PFS treatment. Without plant decomposition, the Fe(OH) hydrolysate-associated Sb remained stable, and the sediment continued to exhibit Sb sink properties. Plant residue decomposition facilitated sedimentary Sb release, and DS decomposition had a greater impact than AP decomposition. The strong decomposition phases triggered abiotic/biotic reduction processes, leading to Fe(OH) dissolution and subsequent Sb(V) release. Concurrently, sulfate reduction and dissolved organic matter (DOM) release regulated Sb mobility. In addition, Sb(V) reduction occurred, and Sb(III) was elevated in the overlying water. The Sb(III) levels gradually decreased during the later aerobic stages, however, did not completely disappear within a short timeframe. Furthermore, the role of the sediment as an Sb sink was significantly hindered, maintaining relatively high levels of dissolved Sb. Sedimentary Sb speciation analysis revealed that plant decomposition induced a shift in Fe-oxyhydroxide-bound Sb to more bioavailable and stable fractions. Our results indicate that plant residue decomposition easily deteriorates PFS efficiency and increases the risk of secondary Sb pollution in water-sediment systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135598DOI Listing

Publication Analysis

Top Keywords

plant decomposition
12
decomposition
10
water-sediment systems
8
plant residue
8
residue decomposition
8
plant
5
decomposition waterside
4
waterside plants
4
plants greatly
4
greatly transformation
4

Similar Publications

Coarse roots represent a globally important belowground carbon pool, but the factors controlling coarse root decomposition rates remain poorly understood relative to other plant biomass components. We compiled the most comprehensive dataset of coarse root decomposition data including 148 observations from 60 woody species, and linked coarse root decomposition rates to plant traits, phylogeny and climate to address questions of the dominant controls on coarse root decomposition. We found that decomposition rates increased with mean annual temperature, root nitrogen and phosphorus concentrations.

View Article and Find Full Text PDF

Impact of different continuous fertilizations on the antibiotic resistome associated with a subtropical triple-cropping system over one decade.

Environ Pollut

December 2024

Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China. Electronic address:

The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes.

View Article and Find Full Text PDF

Effects of straw amendment on the bioavailability of selenite in soil and its mechanisms.

Ecotoxicol Environ Saf

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China. Electronic address:

Dissolved organic matter (DOM) released by straw returning for decomposition interacts with selenium (Se) in soil, which affects the speciation distribution of Se and its bioavailability. However, the relative mechanisms involved are slightly understood. This study investigated the effects of straw-derived DOM on two levels of exogenous selenite (low-Se and high-Se treatments) in two types of soil with distinct pH.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated mutagenesis of SEED FATTY ACID REDUCER genes significantly increased seed oil content in soybean.

Plant Cell Physiol

December 2024

State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Increasing seed oil content (SOC) is an important breeding goal for soybean breeding. While significant efforts have been made to improve SOC through metabolic pathway engineering, research to increase soybean SOC by reducing lipid degradation and fatty acid (FA) decomposition during seed maturation process is limited. Seed Fatty Acid Reducers (SFAR) are members of the GDSL enzyme family and play a crucial role in lipid metabolism.

View Article and Find Full Text PDF

Lignin, an energy-rich and adaptable polymer comprising phenylpropanoid monomers utilized by plants for structural reinforcement, water conveyance, and defense mechanisms, ranks as the planet's second most prevalent biopolymer, after cellulose. Despite its prevalence, lignin is frequently underused in the process of converting biomass into fuels and chemicals. Instead, it is commonly incinerated for industrial heat due to its intricate composition and resistance to decomposition, presenting obstacles for targeted valorization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!