A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrogen bonding-mediated interaction underlies the enhanced membrane toxicity of chemically transformed polystyrene microplastics by cadmium. | LitMetric

Hydrogen bonding-mediated interaction underlies the enhanced membrane toxicity of chemically transformed polystyrene microplastics by cadmium.

J Hazard Mater

College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China. Electronic address:

Published: October 2024

The global attention on microplastic pollution and its implications for human health has grown in recent years. Additionally, the co-existence of heavy metals may significantly alter microplastics' physicochemical characteristics, potentially amplifying their overall toxicity-a facet that remains less understood. In this study, we focused the membrane toxicity of modified polystyrene microplastics (PS-MPs) following cadmium (Cd) pretreatment. Our findings revealed that Cd-pretreated PS-MPs exacerbated their toxic effects, including diminished membrane integrity and altered phase fluidity in simulated lipid membrane giant unilamellar vesicles (GUVs), as well as heightened membrane permeability, protein damage, and lipid peroxidation in red blood cells and macrophages. Mechanistically, these augmented membrane toxicities can be partially ascribed to modifications in the surface roughness and hydrophilicity of Cd-pretreated PS-MPs, as well as to interactions between PS-MPs and lipid bilayers. Notably, hydrogen bonds emerged as a crucial mechanism underlying the enhanced interaction of PS-MPs with lipid bilayers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135562DOI Listing

Publication Analysis

Top Keywords

membrane toxicity
8
polystyrene microplastics
8
cd-pretreated ps-mps
8
ps-mps lipid
8
lipid bilayers
8
membrane
6
ps-mps
5
hydrogen bonding-mediated
4
bonding-mediated interaction
4
interaction underlies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!