Subcellularly amperometric analysis in situ is crucial for understanding intracellular redox biochemistry and subcellular heterogeneity. Unfortunately, the ultra-small size and complex microenvironment inside the cell pose a great challenge to achieve this goal. To address the challenge, a minimized living microbial sensor has been fabricated in this work for amperometric analysis. Here, by fabricating the dimidiate microelectrode as the working electrode, while fitting a living electroactive bacterium (EAB) as the transducer, outward extracellular electron transfer (EET) of the sensory EAB is correlated with the concentration of lactic acid, which is electrochemically recorded and thus displays an electrical signal output for detection. In specific, the S. oneidensis modified dimidiate microelectrode (S.O.@GNE-NPE) acts as an integrated electroanalytical device to generate the electrical signal in situ. The established microcircuit provides unprecedented precision and sensitivity, contributing to subcellular amperometric measurement. The microbial sensor shows a linear response in the concentration range of 0-60 mM, with a limit of detection (LOD) at 0.3 mM. The microsensor also demonstrates good selectivity against interferences. Additionally, intracellular analysis of lactic acid provides direct evidence of enhanced lactic metabolism in cancer cells as a result of "Warburg Effect". This work shows an example of nano-, bio- and electric technologies that have been integrated on the EAB-modified dimidiate microelectrode, and achieves intracellular biosensing application through such integration. It may give a new strategy on the combination of micro/nanotechnologies with sensory EAB for the necessary development of bioelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116648 | DOI Listing |
Biosensors (Basel)
December 2024
Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported.
View Article and Find Full Text PDFFood Chem
December 2024
International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India. Electronic address:
In modern life, people often neglect to consider their eating habits. Antioxidants are primarily used as food additives due to their stability and low toxicity. TBHQ is a commonly used antioxidant in food products as an additive.
View Article and Find Full Text PDFJ Pharm Biomed Anal
December 2024
College of Pharmaceutical Sciences and Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215021, China. Electronic address:
Carbohydrates are essential biomolecules that play a vital role in various biological processes across humans, plants, and bacteria. Despite their ubiquity, the structural elucidation of carbohydrates, particularly oligo- and polysaccharides, remains a significant challenge due to their complex and heterogeneous nature. The high-performance anion exchange chromatography (HPAEC) or called ion chromatography (IC) coupled with pulsed amperometric detection (PAD) has emerged as a powerful tool for highly effective separation and highly specific detection of glycans.
View Article and Find Full Text PDFBMC Biotechnol
December 2024
Division of Biotechnology, Department of Chemistry, Lund University, PO Box 124, 22100, Lund, Sweden.
Anal Bioanal Chem
December 2024
Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Zabolotnogo Street 150, Kyiv, 03680, Ukraine.
This work presents the development and optimisation of an amperometric biosensor for determining aspartate aminotransferase (AST) activity in blood serum, using glutamate oxidase and platinum disc electrodes. AST is a key biomarker for diagnosing cardiovascular and liver diseases. The biosensor's bioselective membrane composition and formation protocol and the working solution (aspartate 8 mM, α-ketoglutarate 2 mM, pyridoxal-5-phosphate 100 µM) were optimised.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!