Electrochemiluminescence (ECL) sensing systems have surged in popularity in recent years, making significant strides in sensing and biosensing applications. The realization of high-throughput ECL sensors hinges on the implementation of novel signal amplification strategies, propelling the field toward a new era of ultrasensitive analysis. A key strategy for developing advanced ECL sensors and biosensors involves utilizing novel structures with remarkable properties. The past few years have witnessed the emergence of MXenes as a captivating class of 2D materials, with their unique properties leading to exploitation in diverse applications. This review provides a comprehensive summary of the latest advancements in MXene-modified materials specifically engineered for ECL sensing and biosensing applications. We thoroughly analyze the structure, surface functionalization, and intrinsic properties of MXenes that render them exceptionally suitable candidates for the development of highly sensitive ECL sensors and biosensors. Furthermore, this study explores the broad spectrum of applications of MXenes in ECL sensing, detailing their multifaceted roles in enhancing the performance and sensitivity of ECL (bio)sensors. By providing a comprehensive overview, this review is expected to promote progress in related areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116623 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!