This retrospective study utilized a mixed-effects logistic model analysis to investigate variables associated with the probability of pregnancy loss (PL) between days 30 and 70 in a dataset comprising 9507 pregnancies from a single cattle herd over 10 years. The model incorporated fixed-effect variables including cow breed (Holstein, Crossbred, and Brown Swiss), parity (1st, 2nd, 3rd, and 4th or more), insemination seasons, insemination number (≤3 vs >3), estrus nature (spontaneous vs synchronized), postpartum problems, sire breed (Holstein, Fleckvieh, Brown Swiss, and Montbéliarde), zygote genotypic (pure vs crossbred), days in milk (DIM) at insemination, actual 305-day milk yield, and sire conception rate. Additionally, random effects included sire (n = 129), cow (n = 3463), and production years (n = 10). The results revealed that cows inseminated with Brown Swiss sires or sires with lower initial conception rates had higher PL rates. Biparous cows, cows with lower 305-day milk yield, cows inseminated later in DIM, cows receiving the 4th or subsequent insemination, and cows inseminated during winter or autumn had lower PL rates. The estrus type and zygote genotype did not significantly impact PL. The random effects of cow, sire, and production years were estimated at 0.230, 0.054, and 0.112, respectively. In conclusion, the study findings suggested that improving management practices for high-yielding cows, cows in early lactation stages, and cows exposed to thermal stress conditions, along with utilizing Brown Swiss cows and sires with high initial conception rates per insemination, could potentially decrease overall PL rates on the farm. Nonetheless, the results did not support the use of Crossbred cows, sires from different breeds, or specific sires to mitigate PL rates on the farm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2024.08.022 | DOI Listing |
Molecules
January 2025
Institute of Life Sciences, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l'Industrie 19, 1950 Sion, Switzerland.
Rosehip is of notable scientific interest due to its rich content of bioactives and its wide-ranging applications in nutrition, cosmetics and pharmaceuticals. The valorization of rosehip by-products, such as pomace, is highly significant for promoting sustainability. This study investigates the development of rosehip-based powders and beverage prototypes derived from both juice and pomace to evaluate the potential use of pomace in instant beverage design and compare it with juice-based formulations.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy.
Objectives: The aim of this study was to investigate the genomic structure of the cattle breeds selected for meat and milk production and to identify selection signatures between them.
Methods: A total of 391 animals genotyped at 41,258 SNPs and belonging to nine breeds were considered: Angus (N = 62), Charolais (46), Hereford (31), Limousin (44), and Piedmontese (24), clustered in the Meat group, and Brown Swiss (42), Holstein (63), Jersey (49), and Montbéliarde (30), clustered in the Milk group. The population stratification was analyzed by principal component analysis (PCA), whereas selection signatures were identified by univariate (Wright fixation index, F) and multivariate (canonical discriminant analysis, CDA) approaches.
Nat Commun
January 2025
Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern Weg 5 HPK, 8093, Zurich, Switzerland.
The Sun drives Earth's energy systems, influencing weather, ocean currents, and agricultural productivity. Understanding solar variability is critical, but direct observations are limited to 400 years of sunspot records. To extend this timeline, cosmic ray-produced radionuclides like C in tree-rings provide invaluable insights.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
Eur J Neurosci
January 2025
Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
The misfolding and aggregation of TAR DNA binding protein-43 (TDP-43), leading to the formation of cytoplasmic inclusions, emerge as a key pathological feature in a spectrum of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). TDP-43 shuttles between the nucleus and cytoplasm but forms nuclear bodies (NBs) in response to stress. These NBs partially colocalise with nuclear speckles and paraspeckles that sequester RNAs and proteins, thereby regulating many cellular functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!