A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Random Pure Gaussian States and Hawking Radiation. | LitMetric

Random Pure Gaussian States and Hawking Radiation.

Phys Rev Lett

School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia.

Published: August 2024

A black hole evaporates by Hawking radiation. Each mode of that radiation is thermal. If the total state is nevertheless to be pure, modes must be entangled. Estimating the minimum size of this entanglement has been an important outstanding issue. We develop a new theory of constrained random symplectic transformations, based on the assumptions that the total state is pure and Gaussian with given marginals. In the random constrained symplectic model we then compute the distribution of mode-mode correlations, from which we bound mode-mode entanglement. Modes of frequency much larger than [k_{B}T_{H}(t)/ℏ] are not populated at time t and drop out of the analysis. Among other relatively thinly populated modes (early-time high-frequency modes and/or late modes of any frequency), we find correlations and hence entanglement to be strongly suppressed. Relatively highly populated modes (early-time low-frequency modes) can, on the other hand, be strongly correlated, but a detailed analysis reveals that they are nevertheless very unlikely to be entangled. Our analysis hence establishes that restoring unitarity after a complete evaporation of a black hole does not require any significant quantum entanglement between any pair of Hawking modes. Our analysis further gives exact general expressions for the distribution of mode-mode correlations in random, pure, Gaussian states with given marginals, which may have applications beyond black hole physics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.060202DOI Listing

Publication Analysis

Top Keywords

pure gaussian
12
black hole
12
random pure
8
gaussian states
8
hawking radiation
8
total state
8
state pure
8
modes
8
distribution mode-mode
8
mode-mode correlations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!