Recent discovery of superconductivity in infinite-layer nickelates has ignited renewed theoretical and experimental interest in the role of electronic correlations in their properties. Here, using first-principles simulations, we show that the parent compound of the nickelate family, LaNiO_{2}, hosts competing low-energy stripe phases, similar to doped cuprates. The stripe states are shown to be driven by multiorbital electronic mechanisms and Peierls distortions. Our study indicates that both strong correlations and electron-phonon coupling effects play a key role in the physics of infinite-layer nickelates, and sheds light on the microscopic origin of electronic inhomogeneity and the lack of long-range order in the nickelates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.066401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!