Typical magnetic skyrmion is a string of inverted magnetization within a ferromagnet, protected by a sleeve of a vortexlike spin texture, such that its cross-section carries an integer topological charge. Some magnets form antiskyrmions, the antiparticle strings which carry an opposite topological charge. Here we demonstrate that topologically equivalent but purely electric antiskyrmion can exist in a ferroelectric material as well. In particular, our computer experiments reveal that the archetype ferroelectric, barium titanate, can host antiskyrmions at zero field. The polarization pattern around their cores reminds ring windings of decorative knots rather than the typical magnetic antiskyrmion texture. We show that the antiskyrmion of barium titanate has just 2-3 nm in diameter, a hexagonal cross section, and an exotic topological charge with doubled magnitude and opposite sign when compared to the standard skyrmion string.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.066802DOI Listing

Publication Analysis

Top Keywords

barium titanate
12
topological charge
12
ferroelectric barium
8
typical magnetic
8
skyrmion string
8
antiskyrmions ferroelectric
4
titanate typical
4
magnetic skyrmion
4
string inverted
4
inverted magnetization
4

Similar Publications

Slide-Ring Structured Stress-Electric Coupling Hydrogel Microspheres for Low-Loss Transduction Between Tissues.

Adv Mater

January 2025

Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.

High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.

View Article and Find Full Text PDF

Fabrication of Piezoelectric Structures with High Porosity by Digital Light Processing.

3D Print Addit Manuf

October 2024

School of Mechanical Engineering (Shandong Institute of Mechanical Design and Research), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.

Digital light processing is a recently developed solution to fabricate complex structured piezoelectric devices. To obtain a high-performance device, the slurry configuration, model slicing, and heat treatment methods during the printing should be carefully determined. In this article, 200 nm particle size barium titanate powders with an optimized solid content of 80% (mass fraction) were used to configure the slurry with higher printing efficiency.

View Article and Find Full Text PDF

Clinically, infectious bone defects represent a significant threat, leading to osteonecrosis, severely compromising patient prognosis, and prolonging hospital stays. Thus, there is an urgent need to develop a bone graft substitute that combines broad-spectrum antibacterial efficacy and bone-inductive properties, providing an effective treatment option for infectious bone defects. In this study, the precision of digital light processing (DLP) 3D printing technology was utilized to construct a scaffold, incorporating zinc oxide nanoparticles (ZnO-NPs) modified barium titanate (BT) with hydroxyapatite (HA), resulting in a piezoelectric ceramic scaffold designed for the repair of infected bone defects.

View Article and Find Full Text PDF

Infectious bone defects pose significant clinical challenges due to persistent infection and impaired bone healing. Icam1 macrophages were identified as crucial and previously unrecognized regulators in the repair of bone defects, where impaired oxidative phosphorylation within this macrophage subset represents a significant barrier to effective bone regeneration. To address this challenge, dual-responsive iron-doped barium titanate (BFTO) nanoparticles were synthesized with magnetic and ultrasonic properties.

View Article and Find Full Text PDF

In the framework of luminescent rare-earth-doped glasses for near-infrared applications, TiO-containing inorganic glasses have been recently demonstrated to be a promising alternative to commercially used high-phonon SiO-based glasses. This study investigates the effect of TiO concentration on the near-infrared spectroscopic properties of Yb ions in multicomponent titanate-germanate glasses. A series of glass samples in the xTiO-(60-x)GeO-BaO-GaO-YbO system (x ranging from 0 to 50 mol%) were synthesized using the melt-quenching technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!