Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Langevin equation is a common tool to model diffusion at a single-particle level. In nonhomogeneous environments, such as aqueous two-phase systems or biological condensates with different diffusion coefficients in different phases, the solution to a Langevin equation is not unique unless the interpretation of stochastic integrals involved is selected. We analyze the diffusion of particles in such systems and evaluate the mean, the mean square displacement, and the distribution of particles, as well as the variance of the time-averaged mean-square displacements. Our analytical results provide a method to choose the interpretation parameter from single-particle tracking experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.067102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!