Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: We investigated how different deceleration intentions (i.e. an automated vehicle either decelerated for leading traffic or yielded for pedestrians) and a novel (Slow Pulsing Light Band - SPLB) or familiar (Flashing Headlights - FH) external Human Machine Interface (eHMI) informed pedestrians' crossing behaviour.
Background: The introduction of SAE Level 4 Automated Vehicles (AVs) has recently fuelled interest in new forms of explicit communication via eHMIs, to improve the interaction between AVs and surrounding road users. Before implementing these eHMIs, it is necessary to understand how pedestrians use them to inform their crossing decisions.
Method: Thirty participants took part in the study using a Head-Mounted Display. The independent variables were deceleration intentions and eHMI design. The percentage of crossings, collision frequency and crossing initiation time across trials were measured.
Results: Pedestrians were able to identify the intentions of a decelerating vehicle, using implicit cues, with more crossings made when the approaching vehicles were yielding to them. They were also more likely to cross when a familiar eHMI was presented, compared to a novel one or no eHMI, regardless of the vehicle's intention. Finally, participants learned to take a more cautious approach as trials progressed, and not to base their decisions solely on the eHMI.
Conclusion: A familiar eHMI led to early crossings regardless of the vehicle's intention but also led to a higher collision frequency than a novel eHMI.
Application: To achieve safe and acceptable interactions with AVs, it is important to provide eHMIs that are congruent with road users' expectations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/00187208241272070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!