A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

TFMKC: Tuning-Free Multiple Kernel Clustering Coupled With Diverse Partition Fusion. | LitMetric

Clustering is a popular research pipeline in unsupervised learning to find potential groupings. As a representative paradigm in multiple kernel clustering (MKC), late fusion-based models learn a consistent partition across multiple base kernels. Despite their promising performance, a common concern is the limited representation capacity caused by the inflexible fusion mechanism. Concretely, the representations are constrained by truncated- k Eigen-decomposition (EVD) without fully exploiting potential information. An intuitive idea to alleviate this concern is to generate a set of augmented partitions and then select the optimal partition by fine-tuning. However, this is overlimited by: 1) introducing undesired hyperparameters and dataset-related consequences; 2) neglecting rich information across diverse partitions; and 3) expensive parameter-tuning costs. To address these problems, we propose transforming the challenging problem of directly determining the optimal partition (optimal parameter) into a diverse partition fusion (parameter ensemble) problem. We design a novel flexible fusion mechanism called tuning-free multiple kernel clustering coupled with diverse partition fusion (TFMKC) by reweighting diverse partitions through optimization, achieving an optimal consensus partition by integrating diverse and complementary information rather than traditional fine-tuning, and distinguishing our work from existing methods. Extensive experiments verify that TFMKC achieves competitive effectiveness and efficiency over comparison baselines. The code can be accessed at https://github.com/ZJP/TFMKC.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3435058DOI Listing

Publication Analysis

Top Keywords

multiple kernel
12
kernel clustering
12
diverse partition
12
partition fusion
12
tuning-free multiple
8
clustering coupled
8
coupled diverse
8
fusion mechanism
8
optimal partition
8
diverse partitions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!