Propolis is a natural product used in cancer treatment, which is produced by bees via different sources. The chemical composition of Propolis is determined based on the climatic and geographical conditions, as well as harvesting time and method. This compound has been the subject of numerous investigational endeavors due to its expansive therapeutic capacity which includes antibacterial, anti-fungal, anti-inflammatory, anti-oxidant, anti-viral, and anti-cancer effects. The growing incidence rate of different cancers necessitates the need for developing novel preventive and therapeutic strategies. Chemotherapy, radiotherapy, and stem cell therapy have proved effective in cancer treatment, regardless of the adverse events associated with these modalities. Clinical application of natural compounds such as Propolis may confer promise as an adjuvant therapeutic intervention, particularly in certain subpopulations of patients that develop adverse events associated with anticancer regimens. The diverse biologically active compounds of propolis are believed to confer anti-cancer potential by modulation of critical signaling cascades such as caffeic acid phenethyl ester, Galangin, Artepillin C, Chrysin, Quercetin, Caffeic acid, Nymphaeols A and C, Frondoside A, Genistein, p-coumaric acid, and Propolin C. This review article aims to deliver a mechanistic account of anti-cancer effects of propolis and its components. Propolis can prevent angiogenesis by downregulating pathways involving Jun-N terminal kinase, ERK1/2, Akt and NF-ƘB, while counteracting metastatic progression of cancer by inhibiting Wtn2 and FAK, and MAPK and PI3K/AKT signaling pathways. Moreover, propolis or its main components show regulatory effects on cyclin D, CDK2/4/6, and their inhibitors. Additionally, propolis-induced up-regulation of p21 and p27 may result in cell cycle arrest at G2/M or G0/G1. The broad anti-apoptotic effects of propolis are mediated through upregulation of TRAIL, Bax, p53, and downregulation of the ERK1/2 signaling pathway. Considering the growing body of evidence regarding different anti-cancers effects of propolis and its active components, this natural compound could be considered an effective adjuvant therapy aimed at reducing related side effects associated with chemotherapy and radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-024-09807-9DOI Listing

Publication Analysis

Top Keywords

effects propolis
12
propolis
10
propolis natural
8
natural compound
8
signaling pathways
8
pathways propolis
8
cancer treatment
8
anti-cancer effects
8
chemotherapy radiotherapy
8
adverse events
8

Similar Publications

Background: Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle.

View Article and Find Full Text PDF

Antiproliferative effect of hydroalcoholic brown propolis extract on tumor and non-tumor cells.

Braz J Biol

January 2025

Universidade Tecnológica Federal do Paraná - UTFPR, Departmeno de Química e Ciências Biológicas, Francisco Beltrão, PR, Brasil.

Studies show that propolis has antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant, antitumor, and immunomodulatory properties, and may protect against diseases such as diabetes, cardiovascular disease, and cancer. We aimed to extract compounds of brown propolis with hydroalcoholic solvents and evaluate their cytotoxic activity on tumor and non-tumor cells by MTT test. We tested the solute:solvent ratio (ethanol:water) and extraction time in a Shaker incubator (710 rpm) before conducting a central composite rotational design (CCRD) to optimize time and solvent mixture.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the effectiveness of home-use desensitizing agents over an 8-week period by comparing them using different measurement methods.

Methods: A randomized, controlled clinical trial was conducted with 180 individuals aged between 18 and 70 who clinically diagnosed dentin hypersensitivity (DH) in two or more non-adjacent teeth. Subjects who met the inclusion criteria (n = 164) were randomly allocated into five test groups-using Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), Arginine, Novamin, Propolis, and Potassium nitrate-and a control group using standard fluoride toothpaste.

View Article and Find Full Text PDF

Leptospirosis is a recurring zoonotic disease of global significance. Leptospirosis is curable, and antibiotics are available for its treatment. However, little is known about the effectiveness of the currently used antibiotics against different species, serovars, and strains.

View Article and Find Full Text PDF

Background: Endodontic treatment aims in the preservation of extremely carious primary teeth. For root canal therapy to be successful, root canals must be properly prepared and effectively irrigated .Therefore, it is necessary to select the proper root canal disinfection method to preserve the primary tooth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!