The Pathophysiological and Therapeutic Implications of Cardiac Light-Chain Amyloidosis Compared With Transthyretin Amyloidosis.

JACC Heart Fail

Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. Electronic address:

Published: October 2024

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchf.2024.07.003DOI Listing

Publication Analysis

Top Keywords

pathophysiological therapeutic
4
therapeutic implications
4
implications cardiac
4
cardiac light-chain
4
light-chain amyloidosis
4
amyloidosis compared
4
compared transthyretin
4
transthyretin amyloidosis
4
amyloidosis
2
pathophysiological
1

Similar Publications

Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective.

Clin Rev Allergy Immunol

January 2025

Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.

View Article and Find Full Text PDF

The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart.

View Article and Find Full Text PDF

Fluid biomarkers such as Glial Fibrillary Acidic Protein (GFAP) and Neurofilament Light (NfL) play important roles in the diagnosis, monitoring, and evaluation of therapeutic responses in conditions such as Multiple Sclerosis (MS) and Aquaporin-4 Neuromyelitis Optica Spectrum Disorder (AQP4-NMOSD). These biomarkers offer key insights into the underlying pathophysiological mechanisms of these diseases, enabling effective follow-up and personalized treatment approaches, which are essential for improving patient outcomes. Herein, we synthesize the structural attributes, functional roles, and clinical significance of GFAP and NfL in the context of MS and AQP4-NMOSD.

View Article and Find Full Text PDF

Stem cell-derived exosome delivery systems for treating atherosclerosis: The new frontier of stem cell therapy.

Mater Today Bio

February 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. As a chronic inflammatory disease with a complicated pathophysiology marked by abnormal lipid metabolism and arterial plaque formation, atherosclerosis is a major contributor to CVDs and can induce abrupt cardiac events. The discovery of exosomes' role in intercellular communication has sparked a great deal of interest in them recently.

View Article and Find Full Text PDF

Coronary microvascular disease (CMD) is one of the commonest causes of cardiac chest pain. The condition is more prevalent in women, and incidence is known to increase with age, hypertension, and diabetes. The pathophysiological pathways are heterogenous and related to intrinsic vascular and endothelial dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!