Three thienopyrrole-fused thiadiazole (TPT) fluorescent dyes featuring a common amide linker and different alkoxy substituents on peripheral trialkoxybenzene moieties were synthesized, and their self-assembly behavior in solution was investigated. The obtained results revealed a substantial steric effect of the alkoxy substituents on the supramolecular polymerization mechanism, which results from a combination of π-stacking and hydrogen (H)-bonding interactions. Detailed spectroscopic measurements revealed that with increasing steric demand of the substituents, the supramolecular polymerization processes in pure methylcyclohexane (MCH) or a mixture of MCH and toluene become temperature-sensitive and enthalpically favorable, resulting in a change from the isodesmic assembly mechanism to the cooperative mechanism. Theoretical calculations suggested that in TPTs with bulky substituents, steric hindrance causes the H-bonding array of the amide moieties to be aligned along the stacking axis of the π-systems; thus, the H-bonding interactions are strengthened compared to those in TPTs with less bulky substituents, compensating for the weakened π-stacking interactions. A chiral TPT derivative with (S) stereogenic centers was found to form homochiral helical supramolecular assemblies that generate discernible circularly polarized luminescence. Achiral TPTs also generate helical assemblies to which preferential helicity can be imparted through the external chiral bias of the solvents (R)- and (S)-limonene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202400829DOI Listing

Publication Analysis

Top Keywords

supramolecular polymerization
12
amide linker
8
polymerization mechanism
8
alkoxy substituents
8
substituents supramolecular
8
h-bonding interactions
8
tpts bulky
8
bulky substituents
8
substituents
5
self-assembly thienopyrrole-fused
4

Similar Publications

Portable Amperometric Biosensor Enhanced with Enzyme-Ternary Nanocomposites for Prostate Cancer Biomarker Detection.

Biosensors (Basel)

December 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.

Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported.

View Article and Find Full Text PDF

Polymer Entanglement-Induced Hydrogel Adhesion.

Gels

December 2024

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Hydrogels are widely used in the field of adhesive materials. However, hydrogel adhesion has previously required the covalent graft of supramolecular groups on polymeric chains. In contrast to that, here, a hydrogel adhesion induced by covalent polymer entanglement between two hydrogel networks was reported.

View Article and Find Full Text PDF

Self-assembling cyclic peptide nanotubes are fascinating supramolecular systems with promising potential for various applications, such as drug delivery, transmembrane ionic channels, and artificial light-harvesting systems. In this study, we present novel pH-responsive nanotubes based on asymmetric cyclic peptide-polymer conjugates. The pH response is introduced by a tertiary amine-based polymer, poly(dimethylamino ethyl methacrylate) (pDMAEMA) or poly(diethylamino ethyl methacrylate) (pDEAEMA) which is protonated at low pH.

View Article and Find Full Text PDF

Herein, we present a strategy to access a novel class of pH-responsive, dual-state emissive (DSE), highly fluorescent pyrrole-based chromophores diformylation of dipyrroethenes (DPE) followed by condensation with various aniline derivatives. The DPE-based chromophores exhibit a large Stokes shift and maintain good fluorescence quantum yields. Remarkably, these chromophores demonstrate reversible colourimetric changes and a fluorometric 'on-off-on' switch in response to pH variations.

View Article and Find Full Text PDF

Solvent-Free Chemical Recycling of Polyesters and Polycarbonates by Magnesium-based Lewis Acid Catalyst.

Angew Chem Int Ed Engl

December 2024

Jilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, 2699 Qianjin Street, 130012, Changchun, CHINA.

Developing a simple and efficient catalyst system for closed-loop recycling of polymers to monomers is an essentially important but challenging task for the recycle of polymer wastes and preventing the downcycle of plastic products. Herein, we employ inexpensive, commercially available Lewis acids (LAs) to achieve closed-loop recycling in bulk through the catalytic depolymerization of aliphatic polyesters and polycarbonates. The scope of LAs is screened by thermogravimetric analysis experiments and distillation experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!