Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: In tailed phages, the baseplate is the macromolecular structure located at the tail distal part, which is directly implicated in host recognition and cell wall penetration. In myophages (i.e., with contractile tails), the baseplate is complex and comprises a central puncturing device and baseplate wedges connecting the hub to the receptor-binding proteins (RBPs). In this work, we investigated the structures and functions of adsorption-associated tail proteins of Deep-Blue and Vp4, two phages infecting members of the group. Their interest resides in their different host spectrum despite a high degree of similarity. Analysis of their tail module revealed that the gene order is similar to that of the phage A511. Among their tail proteins, Gp185 (Deep-Blue) and Gp112 (Vp4) had no structural homolog, but the C-terminal variable parts of these proteins were able to bind strains, confirming their implication in the phage adsorption. Interestingly, Vp4 and Deep-Blue adsorption to their hosts was also shown to require polysaccharides, which are likely to be bound by the arsenal of carbohydrate-binding modules (CBMs) of these phages' baseplates, suggesting that the adsorption does not rely solely on the RBPs. In particular, the BW Gp119 (Vp4), harboring a CBM fold, was shown to effectively bind to bacterial cells. Finally, we also showed that the putative baseplate hub proteins (i.e., Deep-Blue Gp189 and Vp4 Gp110) have a bacteriolytic activity against strains, which supports their role as ectolysins locally degrading the peptidoglycan to facilitate genome injection.
Importance: The group comprises closely related species, including some with pathogenic potential (e.g., and ). Their toxins represent the most frequently reported cause of food poisoning outbreaks at the European level. Bacteriophage research is undergoing a remarkable renaissance for its potential in the biocontrol and detection of such pathogens. As the primary site of phage-bacteria interactions and a prerequisite for successful phage infection, adsorption is a crucial process that needs further investigation. The current knowledge about phage adsorption is currently limited to siphoviruses and tectiviruses. Here, we present the first insights into the adsorption process of Vp4 and Deep-Blue myophages preying on hosts, highlighting the importance of polysaccharide moieties in this process and confirming the binding to the host surface of Deep-Blue Gp185 and Vp4 Gp112 receptor-binding proteins and Gp119 baseplate wedge.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406892 | PMC |
http://dx.doi.org/10.1128/jvi.00745-24 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!