Organic red/near-infrared (NIR) room temperature phosphorescence (RTP) materials with low toxicity and facile synthesis are highly sought after, particularly for applications in biotechnology and encryption. However, achieving efficient red/NIR RTP emitters has been challenging due to the weak spin-orbit coupling of organics and the rapid nonradiative decay imposed by the energy gap law. Here we demonstrate highly efficient red/NIR RTP with boosted quantum yields (Φs) of up to 32.96 % through doping the thionated derivatives of phthalimide (PAI) (MTPAI and DTPAI) into PAI crystals. The red-shifted photoluminescence (PL) stems from a combination of the external heavy atom effect and the formation of emissive clusters centered around electron-rich sulfur atoms. Furthermore, the dopants enhance exciton generation efficiency and facilitate energy transfer from smaller PAI units to larger aggregates, leading to dramatically increased Φ. This strategy proves universal, opening possibilities for acquiring long-wavelength RTP with tunable photophysical properties. The doped crystals exhibit promising applications in optical waveguides and encryption paper/ink. This research provides a practical approach to obtaining long-wavelength RTP materials and offers valuable insights into the mechanisms governing host-guest systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202412967 | DOI Listing |
PLoS One
January 2025
Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, China.
Accurate detection of fabric defects is crucial for quality control in the textile industry. However, the task of fabric defect detection remains highly challenging due to the complex textures and diverse defect patterns. To address the issues of inaccurate localization and false positives caused by complex textures and varying defect sizes, this paper proposes an improved YOLOv8-based fabric defect detection method.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFOphthalmologie
January 2025
Zentrum für Augenheilkunde, Medizinische Fakultät und Universitätsklinikum Köln, Universität zu Köln, Kerpener Str. 62, 50937, Köln, Deutschland.
Background: Orbital lymphomas are the most frequently occurring malignant tumor entities in this region. They are less frequently also localized in the ocular adnexa and show a high entity-specific heterogeneity regarding the treatment and prognosis.
Objective: This article gives an overview of the heterogeneity of symptoms of orbital lymphoma and lymphoma of the ocular adnexa and focuses on new systemic options for treatment of this disease.
J Org Chem
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.
A highly efficient Minisci reaction of pyrimidines with alkyl radical generated from visible-light-induced activation of simple C(sp)-H feedstocks such as (cyclo)alkanes, ethers, alcohols, esters, and amides is reported. A mechanistic study revealed that alkyl radical was generated via hydrogen atom transfer (HAT) of C(sp)-H with dichloromethyl radical (·CHCl), which was generated by photoreduction of chloroform.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Engineering and Architecture, University of Trieste, via A. Valerio 6, 34127 Trieste, Italy.
Ergothioneine (ERG) is a natural sulfur-containing amino acid found in many organisms, including humans. It accumulates at high concentrations in red blood cells and is distributed to various organs, including the brain. ERG has numerous health benefits and antioxidant capabilities, and it has been linked to various human physiological processes, such as anti-inflammatory, neuroprotective, and anti-aging effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!