Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Large language models (LLMs) are sophisticated AI-driven models trained on vast sources of natural language data. They are adept at generating responses that closely mimic human conversational patterns. One of the most notable examples is OpenAI's ChatGPT, which has been extensively used across diverse sectors. Despite their flexibility, a significant challenge arises as most users must transmit their data to the servers of companies operating these models. Utilizing ChatGPT or similar models online may inadvertently expose sensitive information to the risk of data breaches. Therefore, implementing LLMs that are open source and smaller in scale within a secure local network becomes a crucial step for organizations where ensuring data privacy and protection has the highest priority, such as regulatory agencies. As a feasibility evaluation, we implemented a series of open-source LLMs within a regulatory agency's local network and assessed their performance on specific tasks involving extracting relevant clinical pharmacology information from regulatory drug labels. Our research shows that some models work well in the context of few- or zero-shot learning, achieving performance comparable, or even better than, neural network models that needed thousands of training samples. One of the models was selected to address a real-world issue of finding intrinsic factors that affect drugs' clinical exposure without any training or fine-tuning. In a dataset of over 700 000 sentences, the model showed a 78.5% accuracy rate. Our work pointed to the possibility of implementing open-source LLMs within a secure local network and using these models to perform various natural language processing tasks when large numbers of training examples are unavailable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342240 | PMC |
http://dx.doi.org/10.1093/bib/bbae354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!