The Toll-like receptor 9 (TLR9) stimulator, CpG oligodeoxynucleotide, has emerged as a potent enhancer of protein subunit vaccines. Incorporating the protein antigen directly with the CpG adjuvant presents a novel strategy to significantly reduce the required dosage of CpG compared to traditional methods that use separate components. In contrast to existing chemical conjugation methods, this study introduces an enzymatic approach for antigen-adjuvant coupling using a recombinant endonuclease DCV fused with SpyTag. This fusion protein catalyzes the covalent linkage between itself and the CpG adjuvant under mild conditions. These conjugates can be further linked with target protein antigens containing the SpyCatcher sequence, yielding stable, covalently-linked antigen-adjuvant complexes. The corresponding complex utilizing the receptor-binding domain (RBD) of SARS-CoV-2 spike protein as the model antigen, elicits high-titer, specific antibody production in mice via both subcutaneous administration and intratracheal inoculation. Notably, the tumor vaccine candidate fabricated by this method has also shown significant inhibition of cancer progression after intratracheal administration. The technique ensures precise, site-specific coupling and preserves the antigen's structural integrity due to the post-purification coupling strategy that simplifies manufacturing and aids in developing inhalable vaccines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202401116 | DOI Listing |
Biomolecules
January 2025
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan.
Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake.
View Article and Find Full Text PDFImmunohorizons
January 2025
Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States.
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Izmir Biomedicine and Genome Center, Izmir, Turkey.
Low-cost and safe vaccines are needed to fill the vaccine inequity gap for future pandemics. Pichia pastoris is an ideal expression system for recombinant protein production due to its cost-effective and easy-to-scale-up process. Here, we developed a next-generation SARS-CoV2 Omicron BA.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Orthopedics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, PR China; Department of Urology, Deyang People's Hospital, Deyang 618099, Sichuan, PR China. Electronic address:
Developing effective nanoplatforms for chemo-immunotherapy to achieve enhanced tumor suppression and systemic antitumor immunity has recently received extensive attention. Herein, we formulated a multifunctional DNA sandwich nanodevice, DSWAC/siPD-L1, based on triangular DNA origami, to implement enhanced cancer chemo-immunotherapy. Taking advantage of the tumor-targeting ability of the AS1411 aptamer, DSWAC/siPD-L1 efficiently delivered doxorubicin (DOX), CpG, and siPD-L1 into tumor cells.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
Introduction: Cystic echinococcosis (CE), a chronic disabling parasitic zoonosis, poses a great threat to public health and livestock production and causes huge economic losses globally. The commercial Quil-A-adjuvanted Eg95 vaccine was empirically effective for CE control; however, it is expensive and has side effects and insufficient immunity.
Purpose: This study aimed to employ a novel adjuvant consisting of a delivery system and an immune potentiator and assess its adjuvanticity to Eg95 antigen, thereby developing a safe and cost-effective novel vaccine against the disease.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!