Applied Electric Field Effects on Diffusivity and Electrical Double-Layer Thickness.

Small

School of Mechanical Engineering, University of Ulsan, Daehak-ro 93, Namgu, Ulsan, 680749, South Korea.

Published: November 2024

This study utilizes molecular dynamics (MD) simulations and continuum frameworks to explore electroosmotic flow (EOF) in nanoconfined aqueous electrolytes, offering a promising alternative to conventional micro-/nanofluidic systems. Although osmotic behavior in these environments is deeply linked to local fluid properties and interfacial dynamics between the fluid and electrolyte solutions, achieving a complete molecular-level understanding has remained challenging. The findings establish a linear relationship between electric field strength and fluid velocity, uncovering two distinct transport regimes separated by a critical threshold, with a markedly intensified flow in the second regime. It is demonstrated that rising electric field strengths significantly enhance water diffusion coefficients, supported by a detailed analysis of fluid hydration structures, the potential of mean force (PMF), and local stress tensors. Due to the applied electric field strength, the motion of ions and water accelerates, leading to the redistribution of ions and intensification of electrostatic forces. This expands the thickness of the electric double layer (EDL) and amplifies fluid diffusivity, thereby enhancing nanoscale fluid activity. These insights enhance the molecular-level understanding of EOF and define the stability of flow regimes, providing valuable guidelines for advancing nanofluidic technologies, such as drug delivery systems and lab-on-a-chip devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202404397DOI Listing

Publication Analysis

Top Keywords

electric field
16
applied electric
8
molecular-level understanding
8
field strength
8
fluid
6
field
4
field effects
4
effects diffusivity
4
diffusivity electrical
4
electrical double-layer
4

Similar Publications

Background: During last ten years, we have developed a digital library with educational materials in Physical medicine and rehabilitation.

Objectives: The objective of current article is the preparation of an electronic library with educational materials in the area of physical medicine, physical therapy and rehabilitation, and the comparative evaluation of the impact of this repository on the quality of education of students and trainees in the field.

Methodology: The electronic library includes e-books on different topics, elements of the specialty "Physical and rehabilitation medicine (PRM)" or Physiatry - with theoretical data, practical issues and case reports with videos of real patients.

View Article and Find Full Text PDF

This study presents the characterization of a novel multilayered three-dimensional (3D) polymer exhibiting aggregation-induced emission (AIE) properties when excited at a low wavelength of 280 nm. Utilizing fluorescence spectroscopy, we demonstrate that the polymer displays a marked enhancement in luminescence upon aggregation, a characteristic behavior that distinguishes AIE-active materials from conventional fluorophores. Furthermore, we explore the potential application of this multilayered 3D polymer as a fluorescent probe for the selective detection of specified metal ions.

View Article and Find Full Text PDF

Perovskite solar cells are commonly employed in photovoltaic systems because of their special characteristics. Perovskite solar cells remain efficient, but lead-based absorbers are dangerous, restricting their manufacture. Therefore, studies in the field of perovskite materials are now focusing on investigating lead-free perovskites.

View Article and Find Full Text PDF

Advanced wood-inorganic composites: preparation, properties and perspectives.

Mater Horiz

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.

In recent years, the widespread use of wood products has been observed in many fields. Wooden products have excellent green and environmentally friendly characteristics, but their performance often cannot meet people's needs. Many researchers have conducted in-depth research on wood-based composite materials and their modification methods in order to improve the performance of wood.

View Article and Find Full Text PDF

Effect of induced electric field treatment on structural and physicochemical properties of wheat bran to enhance soluble dietary fiber content.

Food Res Int

February 2025

Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.

Improving the content and physicochemical properties of soluble dietary fiber (SDF) in wheat bran (WB) is conducive to enhancing the palatability and processing adaptability of bran-containing products. In this study, induced electric field (IEF) was employed for the modification of WB. The IEF modification conditions were optimized, and the effects on the structural and physicochemical properties of WB and its SDF were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!