A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prompt Multi-level Segmentation with Denoising Model with Fragile Correlated Feature Subset for Brain Tumor Classification. | LitMetric

Prompt Multi-level Segmentation with Denoising Model with Fragile Correlated Feature Subset for Brain Tumor Classification.

Curr Med Imaging

ECE Department, KLEF Green fields, Vaddeswaram 522502, Guntur, Andhra Pradesh, India.

Published: November 2024

Background: Classifying brain tumors with extraordinary precision using images is critical for prognosis and treatment planning. The aberrant proliferation of brain cells characterizes brain tumors. Variations in neuronal development may occur among individuals. The classification of tumors as benign or malignant is contingent upon their rate of growth. A benign tumor remains localized at its site of origin; one that has spread to distant sites is malignant. Brain tumor identification may be difficult due to the unique characteristics of brain tumor cells

Objective: This study presents a method that methodically improves the identification of brain tumor cells and the analysis of functional structures through the utilization of sample training that incorporates features extracted from Magnetic Resonance Imaging (MRI) images. In the image enhancement phase, the color information of the MRI image is converted to greyscale, and its margins are sharpened to facilitate the detection of finer details. For specialists or general practitioners to accurately diagnose life-threatening conditions, such as brain tumors, medical images are required. Picture denoising has been identified in recent research as a potentially fruitful area of study. It is critical to perform image cleanup while preserving the sharpness of the boundaries.

Methods: In this research, a Prompt Multi Level Segmentation Denoising model with a Fragile Correlated Feature Subset (PMLSD-FCFS) model is proposed for accurate denoising of MRI images and to extract the most relevant features set by applying a feature dimensionality reduction model for better brain tumor predictions.

Results: The proposed model achieves 98.2% accuracy in Multi-Level Image Segmentation and 98.4% accuracy in Fragile Correlated Feature Subset Generation.

Conclusion: The experimental findings indicated that the model proposed exhibits superior performance compared to the traditional algorithms. Furthermore, it successfully eliminates the noise from the MRI images, and most relevant features are only considered for brain tumor detection, thereby enhancing the accuracy of classification.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115734056321223240809091842DOI Listing

Publication Analysis

Top Keywords

brain tumor
24
fragile correlated
12
correlated feature
12
feature subset
12
brain tumors
12
mri images
12
brain
10
segmentation denoising
8
denoising model
8
model fragile
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!