Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Healthcare processes are complex and involve uncertainties to influence the service quality and health of patients. Patient transportation takes place between the hospitals or between the departments within the hospital (i.e., Inter- or Intra-Hospital Transportation respectively). The focus of our paper is route planning for transporting patients within the hospital. The route planning task is complex due to multiple factors such as regulations, fairness considerations (i.e., balanced workload amongst transporters), and other dynamic factors (i.e., transport delays, wait times). Transporters perform the physical transportation of patients within the hospital. In principle, each job allocation respects the transition time between the subsequent jobs. The primary objective was to determine the feasible number of transporters, and then generate the route plan for all determined transporters by distributing all transport jobs (i.e., from retrospective data) within each shift. Secondary objectives are to minimize the sum of total travel time and sum of total idle time of all transporters and minimize the deviations in total travel time amongst transporters. Our method used multi-staged Local Search Metaheuristics to attain the primary objective. Metaheuristics incorporate Mixed Integer Linear Programming to allocate fairly the transport jobs by formulating optimization constraints with bounds for satisfying the secondary objectives. The obtained results using formulated optimization constraints represent better efficacy in multi-objective route planning of Intra-Hospital Transportation of patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI240577 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!