Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Defacing of brain magnetic resonance imaging (MRI) scans is a crucial process in medical imaging research aimed at preserving patient privacy while maintaining data integrity. However, existing defacing algorithms are prone to errors, potentially compromising patient anonymity. This paper investigates the feasibility and efficacy of automated quality assessment for defaced brain MRIs using machine learning (ML). Our findings demonstrate the promising capability of ML models in accurately distinguishing between properly and inadequately defaced MRI scans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI240493 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!