Feature attribution methods stand as a popular approach for explaining the decisions made by convolutional neural networks. Given their nature as local explainability tools, these methods fall short in providing a systematic evaluation of their global meaningfulness. This limitation often gives rise to confirmation bias, where explanations are crafted after the fact. Consequently, we conducted a systematic investigation of feature attribution methods within the realm of electrocardiogram time series, focusing on R-peak, T-wave, and P-wave. Using a simulated dataset with modifications limited to the R-peak and T-wave, we evaluated the performance of various feature attribution techniques across two CNN architectures and explainability frameworks. Extending our analysis to real-world data revealed that, while feature attribution maps effectively highlight significant regions, their clarity is lacking, even under the simulated ideal conditions, resulting in blurry representations.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI240489DOI Listing

Publication Analysis

Top Keywords

feature attribution
20
attribution methods
8
r-peak t-wave
8
feature
5
attribution
5
assessing reliability
4
reliability machine
4
machine learning
4
learning explanations
4
explanations ecg
4

Similar Publications

Background/objectives: Millions of individuals worldwide continue to experience symptoms following SARS-CoV-2 infection. This study aimed to assess the prevalence and phenotype of multi-system symptoms attributed to Long COVID-including fatigue, pain, cognitive-emotional disturbances, headache, cardiopulmonary issues, and alterations in taste and smell-that have persisted for at least two years after acute infection, which we define as "persistent Long COVID". Additionally, the study aimed to identify clinical features and blood biomarkers associated with persistent Long COVID symptoms.

View Article and Find Full Text PDF

LLC resonant converters have emerged as essential components in DC charging station modules, thanks to their outstanding performance attributes such as high power density, efficiency, and compact size. The stability of these converters is crucial for vehicle endurance and passenger experience, making reliability a top priority. However, malfunctions in the switching transistor or current sensor can hinder the converter's ability to maintain a resonant state and stable output voltage, leading to a notable reduction in system efficiency and output capability.

View Article and Find Full Text PDF

This study examines the relationship between cognitive and affective flexibility, two critical aspects of adaptability. Cognitive flexibility involves switching between activities as rules change, assessed through task-switching or neuropsychological tests and questionnaires. Affective flexibility, meanwhile, refers to shifting between emotional and non-emotional tasks or states.

View Article and Find Full Text PDF

XAI GNSS-A Comprehensive Study on Signal Quality Assessment of GNSS Disruptions Using Explainable AI Technique.

Sensors (Basel)

December 2024

LASSENA-Laboratory of Space Technologies, Embedded Systems, Navigation and Avionics, École de Technologie Supérieure (ETS), Montreal, QC H3C-1K3, Canada.

The hindering of Global Navigation Satellite Systems (GNSS) signal reception by jamming and spoofing attacks degrades the signal quality. Careful attention needs to be paid when post-processing the signal under these circumstances before feeding the signal into the GNSS receiver's post-processing stage. The identification of the time domain statistical attributes and the spectral domain characteristics play a vital role in analyzing the behaviour of the signal characteristics under various kinds of jamming attacks, spoofing attacks, and multipath scenarios.

View Article and Find Full Text PDF

Dialogue systems must understand children's utterance intentions by considering their unique linguistic characteristics, such as syntactic incompleteness, pronunciation inaccuracies, and creative expressions, to enable natural conversational engagement in child-robot interactions. Even state-of-the-art large language models (LLMs) for language understanding and contextual awareness cannot comprehend children's intent as accurately as humans because of their distinctive features. An LLM-based dialogue system should acquire the manner by which humans understand children's speech to enhance its intention reasoning performance in verbal interactions with children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!