Common Data Models (CDMs) enhance data exchange and integration across diverse sources, preserving semantics and context. Transforming local data into CDMs is typically cumbersome and resource-intensive, with limited reusability. This article compares OntoBridge, an ontology-based tool designed to streamline the conversion of local datasets into CDMs, with traditional ETL methods in adopting the OMOP CDM. We examine flexibility and scalability in the management of new data sources, CDM updates, and the adoption of new CDMs. OntoBridge showed greater flexibility in integrating new data sources and adapting to CDM updates. It was also more scalable, facilitating the adoption of various CDMs like i2b2, unlike traditional methods reliant on OMOP-specific tools developed by OHDSI. In summary, while traditional ETL provides a structured approach to data integration, OntoBridge offers a more flexible, scalable, and maintenance-efficient alternative.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI240681 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!