The integration of tumor-related diagnosis and therapy data is a key factor for cancer-related collaborative projects and research projects on-site. The Medical Data Integration Center (MeDIC) of the University Hospital Schleswig-Holstein, resulting from the Medical Informatics Initiative and Network University Medicine in Germany, has agreed on an openEHR-based data management based on a centralized repository with harmonized annotated data. Consequently, the oncological data should be integrated into the MeDIC to interconnect the information and thus gain added value. A uniform national data set for tumor-related reports is already defined for the cancer registries. Therefore, this work aims to transform the national oncological basis data set for tumor documentation (oBDS) so that it can be stored and utilized properly in the openEHR repository of the MeDIC. In a previous work openEHR templates representing the oncological basis data set were modeled. These templates were used to implement a processing pipeline including a metadata repository, which defines the mappings between the elements, a FHIR terminology service for annotation and validation, resulting in a tool to automatically build openEHR compositions from oBDS data. The prototype proved the feasibility of the referred mapping, integration into the MeDIC is straightforward and the architecture introduced is adaptable to future needs by design.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI240655DOI Listing

Publication Analysis

Top Keywords

data set
12
data
10
oncological data
8
oncological basis
8
basis data
8
integration
4
integration oncological
4
openehr
4
data openehr
4
openehr path
4

Similar Publications

The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.

View Article and Find Full Text PDF

De novo transcriptome assembly of the Perna viridis: A novel invertebrate model for ecotoxicological studies.

Sci Data

January 2025

Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603 Ernakulam North PO., Kochi, 682018, Kerala, India.

Mussels, particularly Perna viridis, are vital sentinel species for toxicology and biomonitoring in environmental health. This species plays a crucial role in aquaculture and significantly impacts the fisheries sector. Despite the ecological and economic importance of this species, its omics resources are still scarce.

View Article and Find Full Text PDF

Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.

View Article and Find Full Text PDF

The characteristics of data produced by omics technologies are pivotal, as they critically influence the feasibility and effectiveness of computational methods applied in downstream analyses, such as data harmonization and differential abundance analyses. Furthermore, variability in these data characteristics across datasets plays a crucial role, leading to diverging outcomes in benchmarking studies, which are essential for guiding the selection of appropriate analysis methods in all omics fields. Additionally, downstream analysis tools are often developed and applied within specific omics communities due to the presumed differences in data characteristics attributed to each omics technology.

View Article and Find Full Text PDF

Ultrasound is a primary diagnostic tool commonly used to evaluate internal body structures, including organs, blood vessels, the musculoskeletal system, and fetal development. Due to challenges such as operator dependence, noise, limited field of view, difficulty in imaging through bone and air, and variability across different systems, diagnosing abnormalities in ultrasound images is particularly challenging for less experienced clinicians. The development of artificial intelligence (AI) technology could assist in the diagnosis of ultrasound images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!