Innovative signal amplification and transduction play pivotal roles in bioanalysis. Herein, cascading CRISPR/Cas and the nanozyme are integrated with electronic amplification in an organic photoelectrochemical transistor (OPECT) to enable triple signal amplification, which is exemplified by the miRNA-triggered CRISPR/Cas13a system and polyoxometalate nanozyme for OPECT detection of miRNA-21. The CRISPR/Cas13a-enabled release of glucose oxidase could synergize with peroxidase-like SiW to induce catalytic precipitation on the photogate, inhibiting the interfacial mass transfer and thus the significant suppression of the channel current. The as-developed OPECT sensor demonstrates good sensitivity and selectivity for miRNA-21 detection, with a linear range from 1 fM to 10 nM and an ultralow detection limit of 0.53 fM. This study features the integration of bio- and nanoenzyme cascade and electronic triple signal amplification for OPECT detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c03220 | DOI Listing |
Copy number variants (CNVs) are prevalent in both diploid and haploid genomes, with the latter containing a single copy of each gene. Studying CNVs in genomes from single or few cells is significantly advancing our knowledge in human disorders and disease susceptibility. Low-input including low-cell and single-cell sequencing data for haploid and diploid organisms generally displays shallow and highly non-uniform read counts resulting from the whole genome amplification steps that introduce amplification biases.
View Article and Find Full Text PDFACS Sens
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
Iontronic sensors based on confined space have garnered significant attention due to their promising applications, ranging from single-cell analysis to studies. However, their limited sensitivity has constrained their effectiveness in studying molecular information during physiological and pathological processes. Here, we demonstrate an electrolyte-gated ionic transistor (EGIT) by integrating the confined ion transport behavior in a double-barreled micropipet with an electrolyte-gated transistor configuration, achieving highly sensitive and selective sensing.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Chemistry, Rutgers University-Camden, Camden, NJ, 08102, USA.
Nucleic acid detection plays a crucial role in various applications, including disease diagnostics, research development, food safety, and environmental health monitoring. A rapid, point-of-care (POC) nucleic acid test can greatly benefit healthcare system by providing timely diagnosis for effective treatment and patient management, as well as supporting diseases surveillance for emerging pandemic diseases. Recent advancements in nucleic acids technology have led to rapid assays for single-stranded nucleic acids that can be integrated into simple and miniaturized platforms for ease of use.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
The development of a sensory signal amplification approach is very crucial for rapid and precise detection of aflatoxin B (AFB). However, such approaches remain scarce due to the weak interactions between AFB and the sensing probes. Herein, the first example of a dual-excitation fluorescent platform for antibody-free AFB detection is reported, which is assembled by an ordered π-π stack of cationic perylene derivative (PTHA) and tris(2,2'-bipyridine)ruthenium(II) [Ru(bpy)].
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
January 2025
Department of Pathology, West China Hospital, Sichuan University, Chengdu610041, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!