Research on MEC computing offload strategy for joint optimization of delay and energy consumption.

Math Biosci Eng

Kunming Iron & Steel Holding Co., Ltd. Kunming 650302, China.

Published: June 2024

The decision-making process for computational offloading is a critical aspect of mobile edge computing, and various offloading decision strategies are strongly linked to the calculated latency and energy consumption of the mobile edge computing system. This paper proposes an offloading scheme based on an enhanced sine-cosine optimization algorithm (SCAGA) designed for the "edge-end" architecture scenario within edge computing. The research presented in this paper covers the following aspects: (1) Establishment of computational resource allocation models and computational cost models for edge computing scenarios; (2) Introduction of an enhanced sine and cosine optimization algorithm built upon the principles of Levy flight strategy sine and cosine optimization algorithms, incorporating concepts from roulette wheel selection and gene mutation commonly found in genetic algorithms; (3) Execution of simulation experiments to evaluate the SCAGA-based offloading scheme, demonstrating its ability to effectively reduce system latency and optimize offloading utility. Comparative experiments also highlight improvements in system latency, mobile user energy consumption, and offloading utility when compared to alternative offloading schemes.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2024276DOI Listing

Publication Analysis

Top Keywords

edge computing
16
energy consumption
12
mobile edge
8
offloading scheme
8
optimization algorithm
8
sine cosine
8
cosine optimization
8
system latency
8
offloading utility
8
offloading
7

Similar Publications

Today, with the increasing use of the Internet of Things (IoT) in the world, various workflows that need to be stored and processed on the computing platforms. But this issue, causes an increase in costs for computing resources providers, and as a result, system Energy Consumption (EC) is also reduced. Therefore, this paper examines the workflow scheduling problem of IoT devices in the fog-cloud environment, where reducing the EC of the computing system and reducing the MakeSpan Time (MST) of workflows as main objectives, under the constraints of priority, deadline and reliability.

View Article and Find Full Text PDF

Background And Objective: Cloud-based Deep Learning as a Service (DLaaS) has transformed biomedicine by enabling healthcare systems to harness the power of deep learning for biomedical data analysis. However, privacy concerns emerge when sensitive user data must be transmitted to untrusted cloud servers. Existing privacy-preserving solutions are hindered by significant latency issues, stemming from the computational complexity of inner product operations in convolutional layers and the high communication costs of evaluating nonlinear activation functions.

View Article and Find Full Text PDF

Rehabilomics Strategies Enabled by Cloud-Based Rehabilitation: Scoping Review.

J Med Internet Res

January 2025

Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Republic of Korea.

Background: Rehabilomics, or the integration of rehabilitation with genomics, proteomics, metabolomics, and other "-omics" fields, aims to promote personalized approaches to rehabilitation care. Cloud-based rehabilitation offers streamlined patient data management and sharing and could potentially play a significant role in advancing rehabilomics research. This study explored the current status and potential benefits of implementing rehabilomics strategies through cloud-based rehabilitation.

View Article and Find Full Text PDF

Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.

View Article and Find Full Text PDF

The preference for simple explanations, known as the parsimony principle, has long guided the development of scientific theories, hypotheses, and models. Yet recent years have seen a number of successes in employing highly complex models for scientific inquiry (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!